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Methods for Stokesian dynamics simulations of nonspherical particles and chains
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The microstructure and properties of suspensions of nonspherical particles are influenced by the specific
particle shapes through hydrodynamic interactions. We describe algorithms for Stokesian dynamics simulations
of arbitrary shape particles, rigid or flexible, constructed with appropriate constraints among rigid spherical
particles whose hydrodynamic mobility is computable by various available schemes, including the one that we
recently describefl]. Chem. Physl12 2548(2000]. The optimal algorithm also provides for rigid attachment
among particles during simulation, by aggregation for example. Its implementation for a system with a general
combination of internal coordinate constrai@vailable in a routine from the authads tested in simulations
of sedimentation of spheroids and chains in bounded and unbounded geometries.
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[. INTRODUCTION tationally expensive and confined to problems with special
configurations, leaving SD with a mobility algorithm, as the
Recently we describeld ] a force multipole algorithm for  sole continuum-based approach for simulating more realistic
computing the hydrodynamic mobility matrix of finite size systems. While it is feasible to extend analytically our mul-
spherical particles, which accounts for the many-body, longtipole mobility schemdg1] to some nonspherical rigid par-
range, and lubrication effects and, in a fluid bounded by aicle shapes, as was accomplished in a SD extension to pro-
hard wall, the additional hydrodynamic wall effects. Thelate spheroids[14], this strategy entails an increased
scheme was used to perform Stokesian dynaf8€8 simu-  mathematical complexity, must be undertaken for each dis-
lations of colloidal sedimentation near a wiH] and irre-  tinct shape required, and allows for neither flexible particles
versible deposition onto a wdlB]. However, many industrial nor type(2) simulations. Therefore we follow an alternative
and biological processes involve nonspherical suspendestrategy with three algorithms for SD simulations of arbitrary
particles, such as disk-shaped red blood cells, acicular cokhape particles, rigid or flexible, formed by imposing suit-
loids common in particulate magnetic recording mefdia  ably chosen holonomic constraints among rigid spherical
rodlike fiber suspensions, macromolecules, and colloidal agparticles whose hydrodynamic mobility matrix is obtainable
gregates. Away from sphericality, the influence of particleby a number of schemd4,15-2Q. By virtue of its decou-
orientation and shape on the hydrodynamic interactibh$  pled structure, the optimal algorithm handles easily t§®e
leads to dynamical effects not exhibited by suspensions adimulations, during which both the number and forms of the
spheres under similar conditions. We describe an algorithngonstraints may vary. This algorithm consists of two parts,
for performing two types of simulations on suspensions ofthe first of which is iterative and comprises two stages. Be-
nonspherical particles. In tydé), particles are defined at the cause the first stage resembles formally gheke scheme
outset and rigid bonding between them forbidden during21,22 for holonomic constraints in molecular dynamics
simulation. Particles could be rigid, such as rigid platelike(MD) simulations, we refer to the entire algorithm as hydro-
particles, prolate and oblate spheroids, or flexible, such adynamicsSHAKE (HSHAKE). As iteration over internal coor-
deformable particle models and polymer chain models coneinate constraints is more rapidly converg€2?] than that
sisting of particles connected by rods. In ty@@g rigid bond-  over equivalent distance constraintssHAKE was imple-
ing between primary particles may occur during simulation,mented[23] for a general combination of distance, angle,
as a result of aggregation for example. The algorithm allowsand torsion constraints.
us to perform simulations on spherocylindrical magnetic col- The paper is organized as follows. In Sec. I, we describe
loidal dispersion$5], where formation of magnetic agglom- the direct approach of incorporating holonomic constraints
erates can influence the dispersion quality, and to study thiato SD simulations of spherical particles with HI. A correc-
sedimentation[2] and deposition 3] of nonspherical par- tion method for eliminating the numerical constraint drift in
ticles. this approach is given in the Appendix. In Sec. lll, we de-
Numerical techniques for solving the Stokes equationscribe the alternative undetermined parameters approach and
starting from boundary integral representations of the veloctwo implementation techniques: a coupled scheme and
ity field, such as the boundary element meth6¢¥] or the = HSHAKE. The HSHAKE implementation is then described for a
completed double layer solutidB,9], can handle nonspheri- system of spherical particles with distance, angle, and torsion
cal particles but are limited to small numbers by their highconstraints, possibly with unconstrained particles. In Sec. IV
computational cost, aside from issues of inherent analyticalve validate the methodology underlyimgHAKE and illus-
difficulties. Collocation techniqugd0—13 are also compu- trate its performance with simulations of sedimentation of a
pair of nonspherical particles, of a nonspherical particle near
a tilted wall, and of a chain in unbounded and bounded
*Electronic address: r.kutteh@mailaps.org fluids.
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II. SD, CONSTRAINTS, AND THE DIRECT APPROACH where the ﬁ are (3<3) mobility tensors. Witl‘fiEUi , Eq.
ConsiderN submicron size spherical non-Brownian par- (4) can be written in dyadic notation
ticles in an incompressible Newtonian fluid, and assume a N N
low-Reynolds-number regime (Rel) so that fluid flow is =S Wt S pt.Fe
described by the Stokes or creeping-flow equat(@4s. As- = K T =1 Kt
sume also stick boundary conditions at the particle surfaces N
and no external flow field, so that fluid motion is due only to tt : .
=2 ul-FHer (i=1,...N), (5)

that of the particles. The motion of any particle in the fluid

creates a flow pattern which causes a drag force on the other
particles. These HI between the particles appear in the forfypnere F¢= _EL:ﬁ\ij o, With \, a Lagrange multiplier.
of a configuration and geometry dependent mobility tensofpe (N+1) Egs.(2) and (5) can be solved numerically for
p. The Stokesian equation of motion for this system is givenpe N r's andl \'s. Differentiating with respect to time Eq.

in terms ofu as (2) and inserting Eq(5) Vi e P, gives

( U) (”‘tt Mtr) ( F) N N N |

= , (1) V.ol L = i Ao Viow1l=0
Q Mrt pr T ;l [Viow] ]_Zl Mij - Fj jgl Mij kgl wl Ok ]

whereU, Q, F, andT are N-dimensional vectors contain- (k=1,...)). (6)
ing the linear and angular velocitiés and €;, and inter- o _
particle and external forces and torqugsand T;, wherei ~ Defining n, as the set of labels of particles
=1,... N. The coefficient matrix isu, and theu® are  With coordinates appearing i, Eqg. (6) can be recast

(3N 3N) mobility matrices, with superscriptsandr de- ~in matrix notation as AA=b, WheNre the vector A
noting translation and rotation, respectively. We performedgcontains thel N\'s, and by=Z2;_, X[ Vioy]- m-F;.

SD simulations on such a systeh—3], by taking T=0, For subsequent reference, we define the matrix
compuling at every time stepandss, oblainingu oM BA. A (£,6) = %10, % en, [ Vo (&) - 1 (6) - [V (6)

(1), and integrating numerically for the coordinates. Consi er(k,k’=1, ... 1). We shall be concerned in this paper with

now the system subject to thegeneral holonomic con- two special cases of the argumedtand 6. In the first case,

straints, _ i . ~ .

0 is a time argument and= 6. In this caseA, (6,0) im-
plies that all terms in its expression are evaluated at the same
time step, or equivalently using the final coordinates from

) . .that time step. The symmetric matri is given by A,
wherer denotes all center of mass coordinates appearing m_A (8,6). In the second casé, is again a time argument
o A general system contains constrained and unconl;utkk'isa’\céordinate argument We ghall encountegr this cl':lse
strained coordinates, and we defidgas the set of labels of ¢ 9 '

the constrained particles. The Stokesian equation of motiof? Secs. 1A and Il B, but as an examplé. (r'(to

oN=0 (k=1,...)), 2)

for this system is given by + 6t),tg) implies that terms in its expression corresponding
to the first argument are evaluated using the coordinates
U wt o\ (F wt ot (FC r'(tg+ ot) (defined in Sec. INwhile tho;e corre_sponding fo
( ) :( . rr) ( ) +( " rr) ( c) ' (3)  the second argument are evaluated using the final coordinates
Q moopt AT mwopt AT from the time stefty. The\’s can be obtained with standard

numerical library routines-¢ computed from its expression
whereF® and T¢ are AN-dimensional vectors containing the above, and Eq5) numerically integrated using® andF, to
constraint forces and torqué$ and T{ . Absence of orien- generate the’s. From Eq.(5) we write
tational degrees of freedom from E@&) impliesT¢=0, and

it follows from Eq. (3) that ) !
5ri:_k§_:1 )\k;; i (Vo]
= e

t tt tt
Ug M1 M2 Mgz 0 Fy
tt tt tt
U, Mo M Mz o || Fo =— 2> M wi-[Viol— > > mi;-[Viod]
Us | | gt it tt = keCi jeng keCi jeng
3 M31 M3 M3z - 3 . .
, .. : =sori+or!  (ViePy), "
mou, ply - ¢ whereC; is defined as the set of labels of constraints con-
it t o c tainingr; Vi e P, and superscripts | and Il denote the con-
Mo M2z Has 2 (4)  tributions from the constraints including and excluding
tt tt tt ! . . g .
M31 M3z M3z - 5 respectively. Note tha i e P, (al) 5ri' does not arise solely

from FS and (a2 or!'+#0, and (@3 Vi« P, or,#0. The

011406-2



METHODS FOR STOKESIAN DYNAMICS SIMULATIONS . . .

counterpart MD system of atomic particles with coordi-
natesr subject to Eq(2) obeys the equations= (1/m;)(F;
+FF) = (1/m;)F;+ 6r, (i=1,...N), where Ff
=—3}_;\V, 0 andm; is the mass of particle The MD
counterpart of Eq. (7) is given by &=

—(Um) Sy M\ Vo= T} (VieP.), where we note that

VieP, (al) &t arises solely fronF¢ and (2) srl'=0, and

(53) VigP,, 6r;=0. The formal differences between this

SD method and the MD direct meth$@2] result from the

contrast betweefal,a2,aBand (d,a22,83).
A numerical constraint method mug25,26 (A) ensure

that the constraints are satisfied during simulation at least

within a desired tolerance, ani@®) given an integration al-

PHYSICAL REVIEW E 69, 011406 (2004

ated by numerically integrating E@5) using F only (i.e.,

sr;=0). Two integrators were used in the simulations of Sec.
IV: an Euler integrator

N
r{ (to+ ) =ri(to) + &j; (1) - Fi(to) + O(8t?)
- IN)I (9)
and a fourth order Runge-Kutta algorithm
 (to+ 8t)=r;(to) + 2(ArM+2ArP+ 2ArE + Ar(4)

+0(8t% (i=1,...N), (10

gorithm, avoid introducing througfA) numerical truncation Where

errors into the coordinate trajectories of an order in the time N
step lower than that present in the direct metlical, present (1) ser _ tt -

in the integration algorithi Such additional numerical er- Ari=otrilr(to)] &,Zl milr(to)]-Filr(to) ],
rors to those in the direct method artificially alter the con-

strained dynamics, as illustrated in the simulations of SeCS-Ari(”“):&ii[r(to)Jranr(”)]

IV C and IV D. Incorporating(al), (a2, and(ad in the di-
rect approach ensures thii‘; in Eq. (5) is completev i, and

consequently that the direct approach satisfies requirement

(B). Absence of a single constraint contribution frém, for
a singlei, would have implied violation of requiremefB).

The proof of this implication is analogous to that in the error

analysis of Sec. Il C. As in the MD ca$22], application of

N
=0t pi[r(to) +cadr™]- Filr(to) +cpAr™],
j=1

n=1,2,3;c1=Cy,=5, C3=1, (17

N -

this direct method in SD simulations leads to constraints thayii square brackets delimiting arguments. Note that the
drift progressively from their constraint values, mainly be-gynge-Kutta integrator requires four evaluations per time
cause of the truncation error in integration algorithms. Hencestep of the computationally expensive mobility matrix

this direct method violates requireme#t). Accordingly, we
describe in the Appendix a correction methi@¥] for the

whereas the Euler scheme requires just one. Secondyrthe
are chosen to satisfy the constraints. Replacingh{tg)’s

constraint drift, more conveniently discussed after the mateby undetermined parameteyss, Eq. (8) becomes

rial in Sec. Il has been presented, and show tha{ direct
+ correctio] method satisfies both requiremens) and

ri(to+ ot,y)

(B). Next, we present an alternative constraint method and

two techniques of implementation, which also satisfy
requirements(A) and (B). The need for this alternative
method is discussed in Sec. Ill B, where we compare the

[direct+correctiod method and the two techniques.

Ill. THE UNDETERMINED PARAMETERS APPROACH

A truncated Taylor series solution of E() can be writ-
ten as

N
Filto+ StA(to)=Ti(to) + 0t 2, j(to)-Fi(to)

| N
- &gl xk(to% p(to) - [V 0] (to)

=1/ (to+ 8t) + 8ri(ty+ 6t,\ (1))
(i=1,... N, 8

wheredr; (to+ ot,\(tg)) denotes the term containing thés.
To compute the coordinates, first thg(ty+ 6t) are evalu-

:ri,(to‘l‘ 6t)+ 5ri(t0+ 5t,’y)

| N
szl ”kj; Hi(to)-[Vijod(to) (i=1,...N),

(12

where they's are chosen to satisfy E(R). Therefore, insert-
ing Eq.(12) Vie P, into Eq.(2) gives

ow(r(to+ 8t, 7))
| N

=0y ' (to+ ot) — &kE ykijl #i(to) - [ Vo 1(to)
& Vg

(13

where the first subscript ipy; runs overn,. Thel y's
obtained by solving this generally nonlinear system are sub-
stituted into Eq.(12) to provide the final coordinates. By
analogy with Eq(7), from Eq.(12) we write
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By comparing Eq(16) with Eq. (8) we can write
Briltot t,y)==8 2 %2 Mt [Vioul(to)
€L &Nk

r;{undetermined parametérsr [ direc]+ O(5t™*1),

—&E Y2 M (to) [Vol(to)

G jeng

i=1,...N). 1
=ori+or  (ViePy). (14) ( ) (17
Note thatV i P, (b1) dr| does not arise solely frofi’ and  From the assumed order of err@(5t™* 1) of the coordi-
(b2 or'#0, and(b3) Vie& P, 8r;#0. When the undeter- nates in the integration algorithm, we can write
mined parameters method is applied to the MD system, the

counterpart of Eq.(14) is given by [22] &ri(to+ 6t,7) , 1 )

= —([BtIM) Sy, il Vioul(to) = orl (VieP), where  Tildreci=rfexact+O(a™ 5 (i=1,... N),

we note thaV i e P, (El) 5r! arises solely fron¥’ and (TQ)

or'=0, and (B) Vi&P,, 8r;=0. The contrast between _ _ . .
T . wherer;[exaci is the trajectory obtained ideally from an
(b1,b2,b3 and (H.b2,03) follows directly from that between o4+ solution of the equations of motion. Inserting E®)

(al,a2,apand (a @2 aB) The undetermined parameters ap-into Eq. (17) gives

proach satisfies requiremef#t) by construction, and incor-

porating (b1), (b2), and (b3) ensures thabr;(t,+ 6t,y) in

Eq. (12) is completeY i, which in turn implies that the ap- riimethod=r;[exac{+O(st?)  (i=1,...N),
proach satisfies requiremef®), as shown by the following (19
error analysis.

The integration algorithm in the direct method can be rep-
resented by the expansion in E&). Assuming henceforth
that the integration algorithm has a local error in the coordi-
nates ofO(8t™ 1), the {8t \y(to) =1L il (t0) - [ Vo] (to)}
term in Eq.(8) is of O(St™). If [Z]L l,u“(to) [V, ak](to)] is
of O(6t?), then\(ty) is of O(5tm a-1 ) or

(18

where methoe“undetermined parameters” and=m+1.
Comparison with Eq(18) shows that the method of undeter-
‘mined parameters satisfies requirem@it Two techniques
for computing they's are described next.

mea A. Coupled technique
A (to) =B+ O(ot™ %), (19 : , . o
This technique consists of two parts, the first is iterative

where thef's are some estimated values of théty)'s. In and corrects the constrained coordinates, the second is non-
the undetermined parameters approach, Xtig)’s are re- iterative and corrects the unconstrained coordinates. To solve
placed by theys, as described before. Accordingly, replac- EQ. (13) for the y's, we Taylor expand in the first part
ing the B's by the s, Eq. (15 becomes y,=\(to) o (r(to+ 6t,y)) aboutr’(ty+ 6t) and recast the expansions
+0(8t™ %), which after insertion back into Eq12) gives  in the matrix form

the coordinates from the method of undetermined parameters

as o+Ly+Q+---=0, (20
ri(tot+ ot y)=r{(to+ ot)
N
=0t 2 Nlto) 2, mij(to) [ Vol (to) where the vectorsr and y contain the o (r'(to+ 8t)) and
K=t =1 Yo » respectivelyl o =Ly (r' (to+ 6t),to) With Ly (£, 6)
+O(8t™Y)  (i=1,...N). (16) =-8tAw (£, 0), andQ is quadratic in they’s,

D
Q= > [2] 2 v 2 m(to) [V/ak/]uo)H > Hji(to) [V prae](to) [ ViV o]t (to+ 81))

ihjeng k' K'=1 i’ eng i"eng
(k=1,...)). (21)

Neglecting nonlinear terms, E€R0) is solved initially fory(®)’s, which are then inserted into E1), and Eq.(20) solved for
¥®’s, and so on until the’'s converge within desired tolerances on the constraints irff ). Assuming convergence at some
time step after iterations, we then have
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' During stage | of iteratiorg, HSHAKE successively selects

ri(to+ ot,y)=r{(to+ 8t)— 6t Z V! each constraintr,=0 and corrects its positions according to
k'=1 Eq. (25), to satisfy it. Withy,(q) denoting they, computed
in iteration g, and r°Y(ty,+ ét) including all preceding
X_E Mi‘}(to)-[Vjcrk,](to) (ViePy), changes, the new positions when considering some
Jeng
(22 MT(tg+ 86 =17 (t+ 8t) + ori(to+ St, yi( @)
_,old _
wherey, =" (k’=1,... ). Using thesey's, the uncon- =17 (to 0 = dtydq)

strainedr; are corrected in the second noniterative part .
X 2 mi(to)-[Viod(te) (Vien,
| €Nk
Fito+ 8t ) =T (to*+ )= 8t X 7o (26)
k'=1
should satisfy

X > pi(t) [Viowl(ty) (YiegPy).

o oIt + 8)= 0| r(te+ 5) — Sty(a)
(23
Note that the first part incorporatébl) and (b2), and the X E ﬂ?}-(to)'[vjffk](to))
second(b3). The formal differences between this technique jen

and the MD “matrix techn_iqie[_ZZ] result from the contrast o, 27

between(b1,b2,b3 and (H,b2,b3). Next, we describe an

alternative decoupled scheme and discuss its advantages. \yhich is generally nonlinear iny(q). Taylor expanding
aboutr°(t,+ 6t),

B. Decoupled schemeHSHAKE

This technique also consists of an iterative first part whmly,k rof(ty+ St)— 5t7k(Q) 2 M{}J(to) [V;ail(to)
corrects the constrained coordinates, and a noniterative sec-
ond part which corrects the unconstrained coordinates. Each
iteration of the first part comprises two stages. Bec@ée
in Eq. (14) contains only contributions from constraints in- (28
volving r;, it is accumulated in stage | by decoupling these
constraints and successively satisfying each with correctiondnd neglecting terms nonlinear ¥ (q), yields
to r;. We consider a certaim (r) and rewrite Eq(14) as

= o (r%to+ 8t)) + yk(q)ka(rO'd(t0+ St),to)+ - - - =0,

T (r®(to+ 6t))
=— . 29
7@ Liadr(to+ t),to) 29

8ri(to+ o, y)——atykE 5 (to) [ V0] (to)

Stage | of iterationq consists therefore of successively se-
— ot E Vi lecting each constraint and applying to it E¢&6) and (29).
k'eCj k' #k Using the y,(q) (k=1,...]) computed in this stage, the
coordinates corrected by E@6) are corrected in stage Il by

X X pli(t) [Vjoul(te) =8t X v

]Eﬂk/ kl$c
I to+ 8t) =12ty + o) — ot > v (q)
k" «C;
X 2 pi(to) [Vjo](to)
o tt .
I i X_E Mij(to) - [Vio](te) (ViePy).
=ori+or!  (Vieny), (24) S

30

where 6r!' denotes the last of the three terms. To satisfy 50
separatelyo,(r)=0, only the first term of Eq(24) is re-  Additional iterations, each consisting of stages | and Il, are
quired: performed until all constraints are satisfied within desired

tolerances. Stages | and Il accumulatel and &r!' Vi
e P., respectively, and iterating compensates for the decou-

ori(tot+ 6t )=~ &ijg wij(to) - [Voi(to) pling of &r|, the separate inclusion @f ' in stage II, and the
: linearization of Eq(28). At convergence we again have Eq.
(Vieny). (25 (22) but with they’s given here by
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TABLE I. Structure and properties GHAKE, HSHAKE, andSHAKE*. From the last two rowssHAKE and

HSHAKE satisfy requirementB) but sHAKE* does not.

HSHAKE (SD)

SHAKE(MD) SHAKE*(SD)

orl (ViePy) Stage | of first part, Entire iteration, Entire iteration,
Eqgs.(26) and(29) Eq. (32 Eqgs.(26) and (29)

orl' (ViePy) Stage Il of first part, Eq(30) 0 0

ori (VigePy) Second part, Eq23) 0 0

Extra errors inr; ,Vie P, No No Yes

Extra errors inr; Vi ¢ P, No No Yes

r method because of the extra cost of computinghtise Sec-
Vit = 2 v (q) (K'=1,...]). (31 ond, application of thgdirect+correctiof method or the
g=1 coupled technique to typ&) simulations, where the con-

In the second noniterative part 86HAKE, the unconstrained
r, are corrected according to E@®3) with the y’s obtained
by Eq.(31). Stages | and Il of the first part incorporatsl)
and(b2), respectively, the second part incorpordfe®, and
combining Eqs(22) and(23) yields Eq.(12). Hencedr;(t,
+6t,v) generated by either the coupled technique o

HSHAKE is completeV i, and consequently both techniques

satisfy requiremen{B). Because they satisfy requirement

r

straints may vary during runtime, requires construction of a
new and usually different size matix or L, respectively, at
each time step involving change in constraints. Such change
however is generally random, requiring a complex procedure
to repeatedly construct a correspondiagr L. In contrast,
HSHAKE easily accommodates changes in constraints during
simulation because of its decoupled structure. This contrast
occurs also in colloidal deposition simulatiof&.

(A) by construction, they are true implementations of the

undetermined parameters approach.
The formal differences betweeASHAKE and SHAKE,
noted in Table I, result from the contrast betwébh,b2,b3

and (H.,b2,63). In particular, due to the contrast between

(b1) and (TJL), the correction in stage | of ABSHAKE itera-
tion, Egs.(26) and (29), is more involved than that of a
SHAKE iteration[22]

r(to+ o) =r(to+ ot)
ai(r®(to+ o)) Viay](to)

2 [Vio Jr%to+ 60)-[Vio](to)
|enk

(Vieny). (32
In the MD limit, Egs.(26) and(29) reduce identically to Eq.
(32), stage Il and the second part BSHAKE vanish, and
HSHAKE reduces tesHAKE. Like SHAKE, it also satisfies re-
quirementgA) and(B) and hence is an extension SfiAKE
to SD simulations with HI, as summarized in Table I.

We favor HSHAKE over the[direct+correctior] method

C. On alternative algorithms to HSHAKE

Consider a hypothetical algorithm alternativeHeHAKE
[in the sense that it also satisfies requirem@ni, which we
denote bysHAKE™ and which, in contrast witRISHAKE, con-
sists of a single iterative part comprising only one stage.
Specifically, in iterationg, SHAKE* selects every constraint
and corrects its coordinates according to E&§) and (29),
with y’s denoted here by's. Additional iterations are per-
formed until all constraints are satisfied within desired toler-
ances. lteration to convergence hence accumulates &hly
VieP.. At convergence, we therefore have

ri(to+ 8t,€)=r{(to+ 6t)
-8t X &0 2 pi(to) [Vjow](to)
k/ECi Jeng

(ViePg, SHAKEY), (33

wheregk,=Ea:1§k,(q). The unconstrained coordinates are
not corrected bysHAKE*, thus

and the coupled technique for two reasons. First, numerical

solution of AA=b or Eq. (20) every time step becomes

ri(to+ o) =r{(to+6t) (VieP.,SHAKE*).  (34)

costly for a large number of constraints. The drift correction

scheme(e.g., first part ofHSHAKE) operates on coordinates

from the direct method, which incorporate already the effecfrom Table | we see that in addition ¢b1), SHAKE™ incor-

of constraints, and therefore it converges faster HsimKE.

porates (B) and (_l:B) rather thanb2) and (b3), leading to

To satisfy the constraints, the correction scheme effectivelyn incompletesr;(tg+ 6t,£)V i, as seen by combining Egs.
adjusts the actual constraint forces from the direct method33) and(34) and comparing them with E¢12), which im-
while HSHAKE computes directly the approximate constraintplies thatSHAKE™ violates requiremeniB), as shown by the
forces. This difference in convergence rates occurs also ifollowing error analysis.

MD simulations [27]. Despite its slower convergence,
HSHAKE is more efficient than the[direct+correctior

For theN spheres subject to E(R) and with an arbitrary
M, SHAKE™ gives from EQq.(33),
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ri(to+ &,g):r{(to"' 5‘:)

|
—0 D & X mi(to) [Vjoe](to)

k'=1 Jeng

+ot D &0 > ml(to) [Vjoe](to)

K'ec, Jemk

(VieP,). (35)

In SHAKE™, the \(tg)’s are replaced by th€’s. Replacing
thus the B's by the ¢&'s, Eq. (15 becomesé = \(to)
+O(6t™?), which after insertion back into E¢35) gives

I’i(t0+ &,E)Zr',(to"f‘ 5t)

—&2 Me(to) E B (to) - [V 0 1(to)

k'=1

+6t X mto)E w(to) - [ Vo 1(to)

k' &C;
+0(8t™Y) (VieP,). (36)
Comparing Eq(36) with Eq. (8) Vi e P, we can write

ri[ SHAKE* |=r [ direc]+ O(st™) (VieP.), (37

where theO(5t™*?) term in Eq.(36) has been dominated by
the O(S5t™) term preceding it. From Eq34), the uncon-
strained coordinates are unmodified $iyAKE™, hence

ri(t0+ 6t) = r',(to+ &)

—&2 Me(to) 2 i (t) [V (to)

k'=1

+5t2 Me(to) 2 w (o) [V 0 1(to)

(39)

Comparing Eq(38) with Eq. (8) Vi ¢ P, we can write

ri[ SHAKE* |=r [ direcf]+ O(5t™) (VigP.). (39
Inserting Eq(18) Vi e P. into Eq.(37) andV i ¢ P into Eq.
(39), and combining the pair gives Eq19) with method
=“SHAKE™ and p=m. Comparison with Eq(18) shows
that SHAKE™ violates requiremen(B) for constrained and un-

constrained particles.

The purpose of the above discussion is not purely aca-

demic. Indeed, thesHAKE-HI algorithm [28] for enforcing

PHYSICAL REVIEW E 69, 011406 (2004

also be applied to SD simulations because it satisfies require-
ment(A). In the case of SD simulationSHAKE-HI is a spe-

cial case ofsHAKE™ however, and hence violates require-
ment (B). SHAKE-HI has already been showf29] to be
inaccurate for BD simulations, and as we just noted, should
not be used for SD simulations either as it leads to incorrect
trajectories, as illustrated in the simulations of Secs. IV C
and IV D.

D. HsSHAKE for internal coordinate constraints

A system ofN spherical particles is subject to E®),
with distance, angle, and torsional constraif8], labeled
by the setsCY C2 andC!, respectively. For distance con-
straints, Eq(2) reduces to

o (N=[r;(HP~d3=0 (VkeCY, (40

whered;; is the constant separation between partickesd],
andrj=r;—r;. By means of Eq(40), Egs.(26) and (29)
reduce to

rP(to+ ot) =1 (to+ 8t) — 28t yi(@) 1 ji (L) - i (to),

r(to+ ot) =rP(to+ 6t) — 28t y(@) 'y (to) - i (to),

(41)

and

[r%to+ot)]12—d

ar Old(to+ 8t) - [ (to )+ﬂj,ji(t0)]'rji(t0),
(42

(@) =[]

respectively, whereu';, (to)= (o) — mi(to). For angle
constraints, Eq(2) becomes

(1) = Gapc(r) — aapc=0 (V ke C?), (43

where ¢,p.=arccos(,,-fcp) is the angle atb formed by
particlesa, b, andc, f,p,=r.p/|r 25|, anday. is the constant
constraint angle. Using E@43), Eqgs.(26) and (29) become

r(to+ ot) =rP(to+ 8t) — St yi(q)
X 2 (o) [Vidand(to) (i=abc),

(44)

distance constraints among spherical particles in Brownian

dynamics(BD) simulations with Rotne-Prag¢f8] HI, can

and
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RAMZ| KUTTEH PHYSICAL REVIEW E 69, 011406 (2004

old —a
Yk(Q):[é\t]il ¢abc(r (t0+ &)) abc , (45)

_ _Eb i [Vidancl (%t + 81))- pll (o) - [V dapcl (to)

LI=a,

Babed IS its constant constraint value. By means of ),
Eqgs.(26) and (29) reduce to

respectively. For torsional constraints, Eg) becomes

0 (1= Tapcd ") = Babca=0 (Y ke Ct)a (46)

r(to+ 6t =rP(to+ 8t) — Styda)
where

. X 2 pi(to) [V Tabcal(to)
abcd j=a,b,c,d

=arcco$(fapXfep) - (FpcXFyc)/ (SiNPapSindpey) ]

is the dihedral angle formed by particlash, ¢, andd, and  and

(i=a,b,c,d) (47

old _
(@) —[6t] 2 Tabed("” (to+ 6t)) — Babca ’ (48)

ij—ahc.d [Vi 7'abcd](rmd(to"' &)) ﬂﬁ(to) : [Vj Tabcd](to)

respectively. Expressions foV ¢4, and V7,4 are fur- T ={m(to) - [V aTabed (to) + mis (to) - [ Vi Tapedl (to)
nished by the Wilson vectorg30] for angle and torsional

internal coordinates, respectively. In the first part and stage | + pie(to) [ Vo Tapedl (to) + tig(to) - [ VaTapedl (to) b -
of iteration g, HSHAKE successively selects each distance, (50)
angle, and torsion constraint, and corrects its coordinates ac-

cording to Egs(41) and(42), Egs.(44) and (45), and Egs.

(47) and(48), respectively. In stage Il of iteratial HSHAKE
corrects these coordinates according to B§),

M%to+ o) =rYto+ ) —26t >, (4D
k' e(cd-c)
-5t Vi (A Ay
k' e(C?-C))
-8t X (T (YiePy),
K e(ct-c))
(49

where
DkrE{l_‘tit,j’ir(to) Tiir(to)hr s

A ={ 5 (t0) - [ Vadanc (to) + mih (t0) - [ Vo dancl (to)
+ p(t0) - [V edanel (to) e

After iteration to convergence, the second partHSHAKE
corrects the unconstrained according to Eq(23):

Fito* 8t y) =1/ (to+ 8 =28t > 9Dy
k'eC

— ot 2 ’)/krAkr_ét 2 ’ykerr
k'ec? k'ect

(ViePy), (51)
with y's given by Eq.(31).

IV. SIMULATION RESULTS AND DISCUSSION

To verify HSHAKE's methodology and report its perfor-
mance, we present here results obtained with it from tpe
simulations of chains and rigid nonspherical particles. We
recall from Sec. | that in typél) simulations rigid bonding
between particles is not allowed after the start of simulation
and hence the constraints are determined at the outset,
whereas in typg2) simulations rigid bonding is possible
during simulation and consequently both the number and
forms of the constraints may vary during the run. Results

011406-8
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FIG. 1. (a) The instantaneous configuration of a pair of sedi- B/Z

menting spheroids, with axes in a vertical plane, is determined by
their separatiorR/a and inclination angl€. (b) Types of motion
for a pair of sedimenting prolate spheroids with axes initially par-
allel to gravity. W is the spatial period foR(ty)<R., and the
dashed lines foR(tp) =R, and R(ty) >R; denote asymptotic tra-
jectories. (c) The two pairs or singles of Secs. IVA and IV B, . .
respectively, with dashed contours to convey overall shapes. Fro?ﬁertlcal such that &:Q=180°.
top to bottoma~D and 1.3D, respectively(d) The instantaneous
configuration of a spheroid sedimenting near an inclined wall, withlimit of infinite separationQ(t..)<90°; (2) if [R/a](to)
axis in a plane normal to it, is determined by the separadienand  =R./a, the particles steadily separate withincreasing to
orientation angle. Q(t.)=90°; (3) if [R/a](tg)<R./a, the particles rotate
past the horizontal@>90°) at some finite maximum sepa-
from type (2) simulations are described elsewhere. In SecstationRy,4, and then approach each other along trajectories
IVA-IV D, the spherical particles have diameted mirroring those preceding the maximum separation. Once
=1 um, are in a fluid with the shear viscosity of water,

FIG. 2. Sedimentation distan@a vs separatioriR/a and rota-
tion angleQ, from SD simulations wittHSHAKE of a pair of sedi-
menting RSD in an unbounded fluid, wii=0.005 s,L,=3, and
Q(tg) =0. The solid and dashed lines correspondRda](ty) =3
and 3.5, respectively, an@ is measured from the upward pointing

and their hydrodynamic mobility is computed using our 2 =
force multipole algorithn1], which includes the hydrody- -
namic wall effect in the bounded geometry cases. The
boundary in these cases is a planar hard wall with stick § &
boundary conditions, and lies in tix plane with the fluid
occupying the half space>0. We adhere for accuracy to a o o
multipole truncation ordet=3 [1,2,17], which is always . = «
specified. Both the Euler integrator in E®) and the fourth §
order Runge-Kutta in Eq(10) were used to generate the 53 ) Q'\C“
r'(to+ ot) [see Eq.(12)]. Results were generated using the =
former, except where stated otherwise. Test simulations were o
performed to ensure that the chos@nvalues yielded accu- 8 e
rate results.
8 w
A. Sedimentation of a pair of nonspherical particles
Referring to Fig. 1a), consider two identical prolate sphe- o o

roids with axes initially vertically orientefiQ(ty)=0] and
aligned with gravity. Depending on the initial value of their
scaled center-center separatipR/a](ty), wherea is the
length of the major semiaxis, the released spheroids can
execute three types of sedimenting motipdd]: (1) if FIG. 3. Same as Fig. 2, but for a pair of sedimenting RSQ with
[R/a](tg)>R./a, whereR./a is some critical separation, the solid and dashed lines correspondingRéa](t,)=3 and 3.5,
the particles steadily separate whileincreases, and in the respectively.
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TABLE Il. Average number ofHSHAKE iterations per step for the SD simulations in an unbounded
fluid of sedimenting pairs of RSD and RSQ, taken oxet(® and 9.3<10° time steps, respectively, where

5t=0.005 s.
[R/a](ty) =3 3.5 4 45 5 6.6

RSD 1.044 1.015 1.005 1.001 1.0

RSQ 30.32 29.25 28.39 25.35 20.86

R/a=[R/a](ty) again, the motion proceeds periodically and straints, two angle constraints as in E43), and a torsion
indefinitely in an unbounded fluid. The three regimes areconstraint as in Eq.(46), with d,,=d,.=d.4=1.00DD,
depicted in Fig. (b). Referring to Fig. {c), consider two  a,,;=60°, apcq=120°, andBap.=0. Convergence of a
pairs of identical nonspherical particles: rigid spheroidaldistance, angle, or torsion constraint is reached when
dimers (RSD) of aspect ratio~2, and rigid spheroidal [Eq. (42) numerato} <yyxd?, [Eq. (45 numerato}

; . . i
quadrimergRSQ of aspect ratioc~1.37. We deflneR_/a 85 <y.X ., Or [EQ. (48) numeratol < y X Bapcd, r€SPEC-
the scaled(genter of mags(center of .mas)sseparatlon be- tively, where we takeyy=yx.=x;=10"°. The simula-
tween a pairZ/a as the scaled coordinate of the center of tions generate the three dynamical regimes of Fily). The
mass of either particle in a pair, the two equal by symmetry

; 4 pair of RSD in Fig. 2 is released from an initial reference
andQ as the anglg between thzeaxis andab for a dimer, height of Z/a=0 and sediments down into the negative
andbd for a quadrimer.

We first performed SD simulations on each pair in an'@n9e ofz/a. For e.ach ir_1itia| valge of the pair separation,
unbounded fluid with differentR/a](to), Q(ty)=0, and a -/al(to). the sedimenting motion generates two curves

dimentation force- F,z on each spherical particle, where plotted with the same line t'ype in Fig. 2. The curve sampllng
's:e:5 1313¢10 15 N sting HSHAKE dimerprigidity, was the whole range of the horizontal represdrisa](Q) while
m%intéined by a disténce constraint’as in &), with d. the other represen{Z/a](R/a). Similar remarks apply to

_ : oL : _the pair of RSQ in Fig. 3. Figures 2 and 3 show that for a
1.00ID, and quadrimer rigidity by three distance con given aspect ratio, a largéR/a](to) leads to largeR., .,

andW (and a larger temporal period), whereas for a given

Ty-T .
(Ty-To) (5) [R/a](ty), a larger aspect ratio leads to lardey,, and W
06 03 0 03 06 (and a largefT). Lengthy simulations sugge&./a~4.93
9l i for the dimers andR./a~6.15 for the quadrimers. Table I
gives the convergence rates $HAKE in the simulations.
gl | The above simulation results for the pairs of RSD and RSQ
constructed wittHSHAKE are consistent with those obtained
71 _ for spheroids by the method of reflectiofl] or the ana-
@
2
) 6 1 Q (degrees)
a 0 20 40 60 80 100 120 140
g 5 7 0 ' ' ' ' ' 1
£ \
- | T o1 f
o 4t 4 A 1 -800 n 1
i y
3l | -1600
A 8
> -2400
2 r N . '
-3200
-1 1 |"( 1 1 1 X
06 03 0 03 06 -4000
(W, - Wp)a 4800 N N U VR O
0 10 20 30 40 50 60 70
FIG. 4. Ry, occurrencegsee Fig. 1b)] vs (W,—W,)/a (right Z/a

curveg and (T,—T,) (left curves from SD simulations with
HSHAKE, in unbounded and bounded fluid, of a pair of sedimenting FIG. 5. Sedimentation distanceY/a along the wall vs separa-

RSD with Q(tp) =0, [R/a](ty) =3, [Z/a](ty) =2000, andL,=3.
The dotted and dashed curves were generated $tith0.005 s,
using the Euler integrator in Eq9) and the fourth order Runge-

tion Z/a and rotation angl€, from SD simulations wittHSHAKE of
a sedimenting RSD near a tilted wall, witht=0.01 s, L,=3,
[Z/a](ty) =10.36, andQ(ty) =135°. TheZ/a curves(left) and the

Kutta in Eq.(10), respectively. The solid curve was generated with Q curves(right) correspond from right to leftf.r.t.l.) to tilt angle
6t=0.001 s using the Euler integrator. Occurrence 9 is the initial=2.5°,2.9°,3°,3.2°,4°,5°,6°, and 7°, with thk,=7° Q curve

and 1 the final before the pair impacts the wall.

omitted, wherew denotes particle contact with the wall.
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Vy (units of a/s)
-01 0 0.2 04 0.6 0.8
0 '\g ! ! ! ! ! 1
_800 F (ﬁ‘ o
-1600
g
> -2400
-3200 r
-4000 r
-4800 ) A A A A A
-0.05 0 0.1 0.2 0.3 0.4
V, (units of a/s)

FIG. 6. —Y/a vs normal and parallel velocitie¥, and V,,
respectively, from the simulations of Fig. 5. TMg curves(left)
and the V, curves (right) correspond frtl toJ=2.5°,
2.9°,3°,3.2°,4°,5° and 6°. Thk,=7° velocity curves are omitted.

lytical extension of a mobility scheme for SD to prolate
spheroidg 14], noted in Sec. I.

We also performed two SD simulations, in a bounded and
unbounded fluid, respectively, of a pair of sedimenting RSD

with [R/a](ty) =3, Q(tg) =0, [Z/a](ty) =2000, and a force

PHYSICAL REVIEW E 69, 011406 (2004

Vy (units of a/s)
-0.2 0 0.2 0.4 0.6 0.8 1
0OF \“LQ' i i j T E
-400
-800
g
>
+ -1200 +
-1600
-2000
-0.1 0 0.1 0.2 0.3 0.4 0.5
V, (units of a/s)

FIG. 8. Same as Fig. 6, but from the simulations of Fig. 7. The
V, curves(left) and theV, curves(right) correspond f.r.t.l. tal
=1°,2°2.4°25°2.6°3° and 3.2°. THg=4° velocity curves are
omitted.

tudes ofT, andW,, the effect of the wall on the trajectories

is seen to be relatively small in this case.

B. Sedimentation of a nonspherical particle near a tilted wall

Referring to Fig. 1d), consider a prolate spheroid near an
infinite plane wall inclined by an anglé with respect to

—ng on each spherical particle. Comparison of results re

veals a sedimenting motion in the bounded fluid qualitativel)pra\/ity' Fﬁr arbitrary ir}itial orieﬂtatiolrQ(toé ang scgled
similar to that in the unbounded fluid, depicted in Fig. 2 for Senter-wall separatiofZ/al(to), the released spheroid can

_ : ; execute three types of sedimenting motion, depending on the
R/a](tg)=3. With u and b denoting unbounded and . . T
E)oun]cge%) fluid, respectively, Fig. 4 shgc])ws that as the pa.value ofJ [32]: (1) if J<Jy, whereJ, is some critical angle,

| . . L
sediments, the hydrodynamic effect of the wall leads to the particle separates from the wall whilvaries and in the

decrease iW, and an increase i,, compared to the con-
stantW,~182.7a and T,~211.5 s, so that the oscillating

&imit of infinite separation the rotation ceases dpt..) be-

comes constant?) if J;<J<J,, wherel, is another critical
angle, the particle eventually reaches a stable equilibrium

trajectories become more “compressed,” the motion Morgynere it translates uniformly afz/a]=[z/a]®® and Q
retarded, and no longer strictly periodic. Given the magni-— Q°* finally, (3) if J>J,, the particle monotonically ap-

proaches the wall until it makes contact. Referring to Fig.
1(c), we consider a single particle in a bounded fluid from

Q (degrees) each pair and defing/a as the scalegcenter of magswall
60 80 100 120 140 separation,Y/a as the scaleq coordinate of the center of
0 N— ' ' 1 massV, andV, as the corresponding center of mass veloci-
"""""""""""""""""""""""""" ties, andQ as the orientation angle relative to thkeaxis,
-400 specified as in Sec. IV A.
800 We performed SD simulations of each particle sediment-
© ing near a wall inclined by an anglerelative to a force of
;. 1200 N magnitudeF; on each sphere, with the sart@bitrary val-
N ues of Z/a](tg) andQ(ty) and different values al. Particle
-1600 \\ rigidity was maintained usingiSHAKE, as specified in Sec.
. IV A. As seen in Figs. 5-8, the simulations produce the three
-2000 \\ dynamical regimes described above. In particular, for a given
: . . L . aspect ratio, a large¥ leads to a smallefZ/a]®% as seen
o 10 20 30 s 4 50 60 70 from Fig. 5 or 7; for a given, a larger aspect ratio leads to
a

a larger[Z/a]®% as seen from Figs. 5 and 7 fdr=3° and

FIG. 7. Same as Fig. 5, but for a sedimenting RSQ near a tite-2°- In addition, Figs. 6 and 8 show that fdrJ,, the

wall, with [Z/a](ty)=10.32 and Q(ty)=60°. The Z/a solid
curves(left) and theQ solid curves(right) correspond f.r.t.l. tal
=2°,2.4°2.5°,2.6°,3°,3.2°, and 4°, with tig=4° Q curve omit-
ted. The dashed curves correspondtol°.

velocity normal to the wallV,, is nonzero, while forJ;
<J<J,, V, eventually vanishes and the parallel component
Vy becomes constant. Simulations we performed with other
arbitrary values of Z/a](t,) andQ(ty) yielded qualitatively
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TABLE Ill. Average number ofHSHAKE iterations per step for the SD simulations of sedimentation near a tilted wall of a RSD and a
RSQ, taken over foand 3x 10° time steps, respectively, whe=0.01 s. Averages fol=J, are not shown.

J=1° 2° 2.4° 2.5° 2.6° 2.9° 3° 3.2° 4° 5° 6°
RSD 1.028 1.074 111 131 1.96 1.98 1.99
RSQ 13.71 15.7 15.1 14.84 17.19 12.57 12.94
similar results. Table Il gives the convergence ratesi®f ri[ SHAKE* ]=r;[ exacl+ 3,0(5t™) (i=1,...N),
HAKE in the simulations. The above simulation results for the (52)

RSD and RSQ constructed witlsHAKE are consistent with
those obtained for spheroids by the boundary integralvhere« and B are prefactors of the local truncation errors
method[32] or a combination of SD with a nonconstraint in one step ofHSHAKE and SHAKE*, respectively. AftemN,
scheme for forming dimerg33]. =t/ot time steps, the global truncation error HEHAKE
is given by Z;_;"fa/O(st™ ) ]=0(st" N, ,Nsal
C. Comparative simulations of a sedimenting chain of spheres = Q(st™* )N a;= ;tO(5t™), where the bar denotes an av-
We performed a pair of SD simulations in an unboundecerage ovelNs steps. With a similar calculation f@HAKE",
fluid on a sedimenting chain of 32 spherical particles conihe trajectories from the two schemes can be written as
nected by distance constraints, as in Ef), maintained by

HSHAKE and SHAKE*, respectively. The center-center dis- ri[HSHAKE](t)=ri[exacﬂ(t)—k;itO(@tm),

tance between adjacent particles was constrained 10,1.4

with x4= _10*6. Each simulation started from the same ran- r.[SHAKE*] (1) =r [ exacl(t) + B;tO(Sst™ 1)

dom nonlinear chain configuration shown in Fig. 10 and ran

for 4300 steps withdt=0.01 s,L;=3, a sedimentation force (i=1,...N). (53)

Fg§/ on each particle, and a Lennard-Jones 6-12 potential
with =D ande =kT, whereT=300 K. Absence of uncon- Wwe computed the RMS difference between the trajectories
strained particles from the current system means H®t from SD simulations withHSHAKE and SHAKE*, K(t)
HAKE and SHAKE* differ only in the missingsr| contribu- = (=N {reHSHAKE](t) — r[ sHAKE*]()}*/N) Y2, where N
tion from the latter, representing contributions from all =32 and the computed trajectories can be written as
constraints that do not contain. Hence application of
SHAKE™ is equivalent to a “nearest rods” approximation r[HSHAKE] () = r;[HSHAKE] (t) + pi ,
along the chain.

For the mth order integration algorithm we can write

C * _ * ! H—
based on Secs. Il B and Ill C, FLSHAKEJ(D) =ri[ SHAKEZ](D) +pi - (I=1,... N)

(54)
ri[HSHAKE]=r;[exacl+ a;O(5t™*1), _ _
with p and p’ denoting the global round-off errors due to
finite machine precision in executing the codes containing
40r ~ 140 the HSHAKE and SHAKE* routines, respectively. As these
codes are identical except for the difference between the
30 ] HSHAKE and SHAKE* routines, which consists of the
) : missing implementation ofr| from the latter, to a good
approximation pij=~p{(i=1,...N). From Eq. (54
we then  have {r{[HSHAKE](t) — r{[SHAKE*](t)}
~ {ri[HSHAKE] (t) — r;[SHAKE*](t)}, and by means of
10l {10 Eq. (53) K(t)~BtO(st™ 1), where B=(=N,8%/N)?2 is
expected to be bounded and slowly varying in time because
of the averaging over botNg andN. For the Euler integrator
= : : : — 0 m=1 andK(t)~Bt. Thus thesHAKE™ violation of require-
0 10 ?0 30 40 ment (B), summarized by Eq(52), should lead to a com-
Time (s) putedK(t) quasilinear in time. Figure 9 confirms this pre-
FIG. 9. The solid curve through the origin is the RMS differenced":tIon and also compa_res th? magn,'tUdes of the ?nd'to'end
K(t) (/2.8 between the trajectories from SD simulations in un- VECtors from the two simulations. Figure 10 highlights the
bounded fluid of a sedimenting 32-particle chain usisgake and ~ Marked difference between the chain configurations gener-
SHAKE*. The dotted straight line highlights its quasilinear depen-ated in the simulations usingsHAKE and SHAKE™, illustrat-
dence. The remaining curves represent the magni@idéthe end-  INg the point made in Secs. Il and Il C that violation of
to-end vector from the simulations withsHAke (solid and  requirementB), here bysHAKE™, would artificially alter the
SHAKE* (dashedl dynamics of the system.

20

G (units of D)
K/2.8 (units of D)
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D. Friction coefficient of a linear chain of spheres near a wall

Consider a rigid linear chain df spherical particles with
center-center separation between adjacent particlesDof (
+9S), placed in a fluid parallel to thg axis, at a height
above a wall in thexy plane. The normalized friction coef-
ficient of the chain for motion parallel to its axis is given by

Fx

C=37700," (59

whereF, is the force on the chain and, its translational
velocity. Analytical approachgs84,35 for evaluatingC are
limited to chains with large aspect ratios and at relatively
largeH. We first describe two numerical approaches for com-
puting C. The first can be cast as either a friction or equiva-
lent mobility problem, and requires a single evaluation of
elements of theinverse friction or (inversg mobility ten-
sors, respectively, at the chain configuration specified above.
The second approach requires short SD simulations on the
chain usingHSHAKE and makes direct use of E¢5). C
values for the chain computed by both approaches, for sev-
eral values ofN and H, are then compared to verify the
accuracy ofHSHAKE. For conciseness we define the chain as
translationally rigid(TR) when (1) it remains parallel to the
x axis at heightH above the wall, ensured by imposiky,
=U;,=0 (i=1,... N), and(2) its spheres all move with
the same translational velocity,;,=U, . The chain is com-
pletely rigid (CR) if it is also rotationally rigid, ensured by
setting =0, which implies that in general #0. For an
only translationally rigid(OTR) chain, we sefl =0, so that
in generalQ#0.

The friction formulation of the first approach for comput-
ing C employs the inverse of Eql),

E ctt gtr U
(T :(é" c")(n
where thez® are (3N X 3N) friction matrices. From the first
row of Eq. (56),

: (56)

F={'U+¢", (57)

or in dyadic notation F=3{L,(Zff-Uj+Li-) (i
=1,... N), where the{ are (3x3) friction tensors. For a
CR chain, Eq(57) leads toFj,=U,SL [ 4] Summing
over N and using Eq(55) gives

1 N

SmgD 12 L (CR). (58)

For an OTR chain, the second row of EJ56)
yields Q=-[¢""%"U, Eq. (57) then gives Fj,
— N tt__ ot prrp—1 g1t

_szjzl{(g g [g ] g )ij}xxv and we get

N
2 "L (OTR).
FIG. 10. Snapshot pairs from the simulations of Fig. 9 with 37D iT=1 .
HSHAKE (left) and sHAKE* (right), taken from top to bottom at O s, (59
10.75 s, 21.5 s, 32.25 s, and 43 s. The sedimentation Iég&e
points from left to right along the horizontal, with a slight tilt into
the page.

In the mobility formulation, the first row of Eq1) gives

U= u"F+ u'T. (60)
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TABLE IV. Computed friction coefficients of the chain described in Sec. IV D, Wtbpheres, length=ND+0.1D(N—1), and height
H=(0.5+10 ®)D above the wallC andC* are the friction coefficients of the OTR chain, computed by (§) from short SD simulations
usingHSHAKE andSHAKE®, respectively, with_,=4, st=10"* s, andyy=10"1° From the simulations withiSHAKE, (Q,) is the average
angular velocity of the spheres about thaxis, U, the chain translational velocity, andhe average number efSHAKE iterations per step.

N C Eq. (62 Eq. (58 Cc* (Qy)(rad/s) U,(D/s) I

5 33.616 33.616 35.549 33.515 0.0361 0.0810 11

10 65.964 65.964 69.972 65.8078 0.0374 0.0825 32

15 98.295 98.295 104.381 98.119 0.0378 0.0831 56

20 130.6209 130.6209 138.786 130.435 0.0380 0.0834 81.5
25 162.944 162.944 173.189 162.753 0.0382 0.0835 107.75
30 195.266 195.266 207.591 195.0707 0.0383 0.0836 128.75
For a CR chain, ﬂtht? second row of Eq(l) ©Q=#0, so the chain is OTR. The force on the chainFis
leads to T=-—[p"]""p'F, and Eq. (60 vyields =NF,+3 F¢, where the sum of the internal constraint

Fix=U S { ("= T~ )5 Y SO that

N
- 377177D i,jzzl {(p"= I‘tr[Mrr]_lurt)ﬁl}xx (CR).
(61)
For an OTR chain, Eq. (600 leads to F
- UXE}\Izl[(Mn)i}l]xx, and we get
= ! . tty—1
c= 37D i,j2:1 [(m)ij"1xx  (OTR). (62)

Equationg58) and(59) are equivalent to Eq$61) and(62),

forces must vanish. The approximate constraint forggs

= _ELzl'kai‘Tk were computed at every time step and the
vanishing of their sum verified as a numerical check. The
velocity of each sphere was computed by the central differ-
ence formula  U;(to)=[ri(to+ 6t) —ri(tg— ot)]/26t
+0(8t?), Uiy (to) = U,(to) was verified, andC computed in
this second approach by E(5) as

— — NFQ
C—C(to)— m (63

Tables IV and V compare the friction coefficients com-
puted by Eqs(63), (62), and(58), for H=(0.5+ 10 ) D and

respectively. Given the chain configuration above and ouH=10L, respectively, and various chain lengths. As a dilute
friction/mobility algorithm[1] for spheres in a bounded fluid, aqueous suspension of micron-diameter polystyrene spheres
the more convenient Eq8) and(62) are adopted however s observed[38] to aggregate into linear chains wit8

for computingC by this first approach below. Calculations of ~0.1D under a strong electric field, and similar separation
this type, requiring no simulations, have been performechas been predictefB9] for field-induced chains of dipolar

[36,37 on chains of spheres but using E§8) only.

In the second approach for computi@y we perform a

colloidal particles, we tools=0.1D. For C computed with
SD simulations by Eq:63), we generated the (ty+ 6t) [see

short SD simulation on the same chain with an external forcgg. (12)] with the fourth order Runge-Kutta integator in Eq.

Fgf( on each sphere. By meanswdgHAKE, (N—1) distance

(10) and verified at every time step thef,=U,, U;, =0,

constraints, as in Eq40), fix the separation between adja- U;,~0 (i=1, ... N), hence that the chain is TR as antici-

cent particles to D+S). By symmetry U;,=0 (i
=1,...N), and for H>L, where the chain length

pated. That the chain is specifically OTR is highlighted by

the nonzerd(},) in Table IV. Tables IV and V show that the

=ND+(N—1)S, the medium is effectively unbounded so friction coefficients computed by Eq63) using HSHAKE

that U;,~0 also by symmetry, whereas fét<L, HI with
the wall lead toU;,~0, as illustrated below. Hence fot
>L or H<L, U;,=0, U;,~0, and by virtue ofHSHAKE

agree exactly with those from E2), for both values ofH.

In addition, for H=10L the medium around the chain is

effectively unbounded, weak HI with the wall givg,)

Uix= Uy, so the chain is TR. Absence of orientational coor-~0, and the OTR chain is effectively CR. We expect then

dinates from the constraints impli@$§= 0, hence in general

the friction coefficients computed by E(58) to agree with

TABLE V. Same as Table IV, but witld =10L.

N C Eq. (62 Eq. (58 Cc* (Q)(radls) U,(D/s) |

5 2.0840 2.0840 2.0840 2.0494 ~0 1.3062 15
10 3.116 3.116 3.116 3.0270 ~0 1.747 25
15 4.0348 4.0348 4.0348 3.9064 ~0 2.0240 22
20 4.890 4.890 4.890 4.733 ~0 2.227 31
25 5.7025 5.7025 5.7025 5.524 ~0 2.387 41
30 6.484 6.484 6.484 6.288 ~0 2.519 55
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those from Eq.(63) or (62), as Table V confirmsHSHAKE ~ To compute the coordinates, thgt,+ 5t,\(ty)) are gener-
generates through E63) the correct friction coefficients in ated by the direct method, and the, and therefore the's,
Tables IV and V because it satisfies both requireméAjs chosen to satisfy Eq2) at every time step. Therefore, in-
and (B). Any alternative scheme satisfying requiremeéf serting Eq.(Al) into Eq.(2) gives

but not(B) will result in a chain which is also OTR under the

above simulation conditions but with an incorrétt, hence

incorregt friction 'co.efficients_. We iIIus_,trate this point py e o (r(to+ ot, )= r(te+ St A(to))

computing the friction coefficients with Eq63) but using
SHAKE™. As discussed in Sec. IV C, the difference for the

. . . | N
chain system betweeRSHAKE and SHAKE™ is the missing

sr!' contribution from the latter, which leads to violation of - &szl ”k’jzl mi(to)-[Vjoi0](to)
requiremeniB). Tables IV and V show tha&aHAKE™ always -

underestimates in this case the correct value of the friction =0 (k=1,...)). (A2)
coefficient.

The 7's obtained by solving Eq/A2) are substituted into Eq.
V. CONCLUSION (A1) to provide the finalr; VieP.. We setr;(ty+ t,7)

=r;(to+ ot,\(tg)) VigP.. Consequently, the first part of

We described constraint algorithms for SD simulations Ofthel E:gupled t(eg)rgniqug OrCtDl'SHAKE ?23] isyused to cofnpute
arbitrary shape particles, r|g|d_ or erX|bIe,_ consisting of e 7s, replacing r/ (to+8t), r(to+ot,y), and ori(to
spheres connected by appropriate constraints and with Sty) by it StA(ty)), Ti(tetot,m), and ori(t
obtained by any of a number of available mobility schemesJr &’Z) reyspe,:ct?vely, 07% TIt0 1 1o
fo.r spheres.'The optimal angrithHsHAKE [23] was v'erified ' The 'drift correction method approximates(t;) by
with simulations of nonspherical particles and chains, whic Meto)+ m VieP,, as seen by comparing E68) with

employed different forms of constraints and numerical mte-Eq. (A1). Accordingly, replacingg, by [M(to)+ 7, EQ.

grators. In the simulations of rigid particles, two simple a mea L
shapes were considered, but simulations with other shapé%_S) becomeg A (to) + 7x] = N(to) + O(St™7), keeping in

are possible with appropriate internal coordinate constraintsm'?d t?e e‘}“t‘;'g ISI Onl){. ap;t)rr](_mmate bgcaubse E@ tareE
penaps even usng the simple shapes e buidng bocEEeS S 082 Tsering e ipresson nack o £
Similarly, simulations of chains of nonspherical particles or ' !

simulations of other flexible particles are feasible. Additional
simulation results obtained withSHAKE are described else-
where[40]. Finally we note that a situation may arise where  Fi(to+ &t, 7)=ri(to) + 8t >, i (to) - Fi(to)
the analytical development of a mobility algorithm tailored =1

N

to a specific nonspherical particle shdpeg., oblate or pro- I N

late spheroids as discussed in Sec. |, is being considered. — 8t N(tg) X Mﬁ(to)'[VJUk](to)
Even in this case, we have shown that the approach de- k=1 i=1

scribed here provides a complementary quick means of gen- LO(St™Y)  (VieP,). (A3)

erating preliminary simulation results for the approximate
particle shape and situation at hand, thus aiding to decidg. .- inq Eq(A3) with E VieP. w n wri
whether to pursue the more involved analytical approach. €o paring Eq(A3) with Eq. (8) Vi < Pc, we ca te

APPENDIX: DRIFT CORRECTION rildirect+ correctio=r;[direc]+ O(&t™* ") (Vie I(DC) )
A4
We describe a method for eliminating the constraint drift
from the direct method at every time stépi € P., we add The unconstrained; are unmodified by the correction

to Eqg.(8) a term containind unknown %’s, scheme, hence
ri(to+ 6t m) =ri(to+ ot,A(to)) ri[ direct+ correctiof=r;[direc] (Vi&P,). (A5)
' N , Inserting Eq.(18) Vie P, into Eq. (A4) andV i ¢ P, into
_&g& Ukzl Hij(to) - [ Vo (o) Eq. (A5), and combining the resulting equations gives Eq.
. (190 with method="direct+correction” and p=m-+1.
=r,(tg+ St \(tg))+ Ori(to+ St, 7) Comparison with Eq(18) shows that thédirect+correctior]
method satisfies requireme(f). It satisfies also requirement
(ViePy). (A1) (A) by construction.
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