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Methods for Stokesian dynamics simulations of nonspherical particles and chains

Ramzi Kutteh*
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA

~Received 8 August 2003; published 30 January 2004!

The microstructure and properties of suspensions of nonspherical particles are influenced by the specific
particle shapes through hydrodynamic interactions. We describe algorithms for Stokesian dynamics simulations
of arbitrary shape particles, rigid or flexible, constructed with appropriate constraints among rigid spherical
particles whose hydrodynamic mobility is computable by various available schemes, including the one that we
recently described@J. Chem. Phys.112, 2548~2000!#. The optimal algorithm also provides for rigid attachment
among particles during simulation, by aggregation for example. Its implementation for a system with a general
combination of internal coordinate constraints~available in a routine from the author! is tested in simulations
of sedimentation of spheroids and chains in bounded and unbounded geometries.

DOI: 10.1103/PhysRevE.69.011406 PACS number~s!: 82.70.2y, 83.80.Hj, 02.70.2c
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I. INTRODUCTION

Recently we described@1# a force multipole algorithm for
computing the hydrodynamic mobility matrix of finite siz
spherical particles, which accounts for the many-body, lo
range, and lubrication effects and, in a fluid bounded b
hard wall, the additional hydrodynamic wall effects. T
scheme was used to perform Stokesian dynamics~SD! simu-
lations of colloidal sedimentation near a wall@2# and irre-
versible deposition onto a wall@3#. However, many industria
and biological processes involve nonspherical suspen
particles, such as disk-shaped red blood cells, acicular
loids common in particulate magnetic recording media@4#,
rodlike fiber suspensions, macromolecules, and colloidal
gregates. Away from sphericality, the influence of parti
orientation and shape on the hydrodynamic interactions~HI!
leads to dynamical effects not exhibited by suspensions
spheres under similar conditions. We describe an algori
for performing two types of simulations on suspensions
nonspherical particles. In type~1!, particles are defined at th
outset and rigid bonding between them forbidden dur
simulation. Particles could be rigid, such as rigid platel
particles, prolate and oblate spheroids, or flexible, such
deformable particle models and polymer chain models c
sisting of particles connected by rods. In type~2!, rigid bond-
ing between primary particles may occur during simulatio
as a result of aggregation for example. The algorithm allo
us to perform simulations on spherocylindrical magnetic c
loidal dispersions@5#, where formation of magnetic agglom
erates can influence the dispersion quality, and to study
sedimentation@2# and deposition@3# of nonspherical par-
ticles.

Numerical techniques for solving the Stokes equatio
starting from boundary integral representations of the ve
ity field, such as the boundary element method@6,7# or the
completed double layer solution@8,9#, can handle nonspheri
cal particles but are limited to small numbers by their hi
computational cost, aside from issues of inherent analyt
difficulties. Collocation techniques@10–13# are also compu-
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tationally expensive and confined to problems with spec
configurations, leaving SD with a mobility algorithm, as th
sole continuum-based approach for simulating more reali
systems. While it is feasible to extend analytically our m
tipole mobility scheme@1# to some nonspherical rigid par
ticle shapes, as was accomplished in a SD extension to
late spheroids @14#, this strategy entails an increase
mathematical complexity, must be undertaken for each
tinct shape required, and allows for neither flexible partic
nor type~2! simulations. Therefore we follow an alternativ
strategy with three algorithms for SD simulations of arbitra
shape particles, rigid or flexible, formed by imposing su
ably chosen holonomic constraints among rigid spher
particles whose hydrodynamic mobility matrix is obtainab
by a number of schemes@1,15–20#. By virtue of its decou-
pled structure, the optimal algorithm handles easily type~2!
simulations, during which both the number and forms of t
constraints may vary. This algorithm consists of two pa
the first of which is iterative and comprises two stages. B
cause the first stage resembles formally theSHAKE scheme
@21,22# for holonomic constraints in molecular dynamic
~MD! simulations, we refer to the entire algorithm as hydr
dynamicsSHAKE ~HSHAKE!. As iteration over internal coor-
dinate constraints is more rapidly convergent@22# than that
over equivalent distance constraints,HSHAKE was imple-
mented@23# for a general combination of distance, ang
and torsion constraints.

The paper is organized as follows. In Sec. II, we descr
the direct approach of incorporating holonomic constrai
into SD simulations of spherical particles with HI. A corre
tion method for eliminating the numerical constraint drift
this approach is given in the Appendix. In Sec. III, we d
scribe the alternative undetermined parameters approach
two implementation techniques: a coupled scheme
HSHAKE. TheHSHAKE implementation is then described for
system of spherical particles with distance, angle, and tors
constraints, possibly with unconstrained particles. In Sec.
we validate the methodology underlyingHSHAKE and illus-
trate its performance with simulations of sedimentation o
pair of nonspherical particles, of a nonspherical particle n
a tilted wall, and of a chain in unbounded and bound
fluids.
©2004 The American Physical Society06-1
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II. SD, CONSTRAINTS, AND THE DIRECT APPROACH

ConsiderN submicron size spherical non-Brownian pa
ticles in an incompressible Newtonian fluid, and assum
low-Reynolds-number regime (Re!1) so that fluid flow is
described by the Stokes or creeping-flow equations@24#. As-
sume also stick boundary conditions at the particle surfa
and no external flow field, so that fluid motion is due only
that of the particles. The motion of any particle in the flu
creates a flow pattern which causes a drag force on the o
particles. These HI between the particles appear in the f
of a configuration and geometry dependent mobility ten
m. The Stokesian equation of motion for this system is giv
in terms ofm as

S U

V
D 5S mtt mtr

mrt mrrD S F

TD , ~1!

whereU, V, F, andT are 3N-dimensional vectors contain
ing the linear and angular velocitiesUi and Vi , and inter-
particle and external forces and torquesFi andT i , wherei
51, . . . ,N. The coefficient matrix ism, and themab are
(3N33N) mobility matrices, with superscriptst and r de-
noting translation and rotation, respectively. We perform
SD simulations on such a system@1–3#, by taking T50,
computing at every time stepF andm, obtainingU from Eq.
~1!, and integrating numerically for the coordinates. Consi
now the system subject to thel general holonomic con
straints,

sk~r !50 ~k51, . . . ,l !, ~2!

wherer denotes all center of mass coordinates appearin
sk . A general system contains constrained and unc
strained coordinates, and we definePc as the set of labels o
the constrained particles. The Stokesian equation of mo
for this system is given by

S U

V
D 5S mtt mtr

mrt mrrD S F

TD 1S mtt mtr

mrt mrrD S Fc

TcD , ~3!

whereFc andTc are 3N-dimensional vectors containing th
constraint forces and torquesFi

c and T i
c . Absence of orien-

tational degrees of freedom from Eq.~2! impliesTc50, and
it follows from Eq. ~3! that

S U1

U2

U3

A
D 5S m11

tt m12
tt m13

tt
•••

m21
tt m22

tt m23
tt

•••

m31
tt m32

tt m33
tt

•••

A A A �

D S F1

F2

F3

A
D

1S m11
tt m12

tt m13
tt

•••

m21
tt m22

tt m23
tt

•••

m31
tt m32

tt m33
tt

•••

A A A �

D S F1
c

F2
c

F3
c

A
D , ~4!
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where themi j
tt are (333) mobility tensors. Withṙ i[Ui , Eq.

~4! can be written in dyadic notation

ṙ i5(
j 51

N

mi j
tt
•Fj1(

j 51

N

mi j
tt
•Fj

c

5(
j 51

N

mi j
tt
•Fj1d ṙ i ~ i 51, . . . ,N!, ~5!

where Fj
c52(k51

l lk¹jsk , with lk a Lagrange multiplier.
The (N1 l ) Eqs. ~2! and ~5! can be solved numerically fo
the N r ’s and l l ’s. Differentiating with respect to time Eq
~2! and inserting Eq.~5! ; i PPc gives

(
i 51

N

@“ isk#•F (
j 51

N

mi j
tt
•Fj2(

j 51

N

mi j
tt
• (

k851

l

lk8@“ jsk8#G50

~k51, . . . ,l !. ~6!

Defining nk as the set of labels of particle
with coordinates appearing insk , Eq. ~6! can be recast
in matrix notation as Al5b, where the vector l
contains the l l’s, and bk5( i Pnk

( j 51
N @“ isk#•mi j

tt
•Fj .

For subsequent reference, we define the ma
Ãkk8 (z,u) [ ( i Pnk

( j Pnk8
@ “ isk # (z) • mi j

tt (u) • @“ jsk8 #(u)

(k,k851, . . . ,l ). We shall be concerned in this paper wi
two special cases of the argumentsz andu. In the first case,
u is a time argument andz5u. In this caseÃkk8(u,u) im-
plies that all terms in its expression are evaluated at the s
time step, or equivalently using the final coordinates fro
that time step. The symmetric matrixA is given by Akk8
5Ãkk8(u,u). In the second case,u is again a time argument
but z is a coordinate argument. We shall encounter this c
in Secs. III A and III B, but as an example,Ãkk8„r 8(t0
1dt),t0… implies that terms in its expression correspondi
to the first argument are evaluated using the coordina
r 8(t01dt) ~defined in Sec. III! while those corresponding to
the second argument are evaluated using the final coordin
from the time stept0. Thel ’s can be obtained with standar
numerical library routines,Fc computed from its expressio
above, and Eq.~5! numerically integrated usingFc andF, to
generate ther ’s. From Eq.~5! we write

d ṙ i52 (
k51

l

lk (
j Pnk

mi j
tt
•@“ jsk#

52 (
kPCi

lk (
j Pnk

mi j
tt
•@“ jsk#2 (

k¹Ci

lk (
j Pnk

mi j
tt
•@“ jsk#

5d ṙ i
I1d ṙ i

II ~; i PPc!, ~7!

whereCi is defined as the set of labels of constraints co
taining r i ; i PPc , and superscripts I and II denote the co
tributions from the constraints including and excludingr i ,
respectively. Note that; i PPc ~a1! d ṙ i

I does not arise solely

from Fi
c and ~a2! d ṙ i

IIÞ0, and ~a3! ; i ¹Pc , d ṙ iÞ0. The
6-2
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counterpart MD system ofN atomic particles with coordi-
natesr subject to Eq.~2! obeys the equationsr̈ i5(1/mi)(Fi

1Fi
c)5(1/mi)Fi1d r̈ i ( i 51, . . . ,N), where Fi

c

52(k51
l lk“ isk andmi is the mass of particlei. The MD

counterpart of Eq. ~7! is given by d r̈ i5

2(1/mi)(kPCi
lk“ isk5d r̈ i

I (; i PPc), where we note tha

; i PPc (ā1) d r̈ i
I arises solely fromFi

c and (ā2) d r̈ i
II50, and

(ā3) ; i ¹Pc , d r̈ i50. The formal differences between th
SD method and the MD direct method@22# result from the
contrast between~a1,a2,a3! and (ā1,ā2,ā3).

A numerical constraint method must@25,26# ~A! ensure
that the constraints are satisfied during simulation at le
within a desired tolerance, and~B! given an integration al-
gorithm, avoid introducing through~A! numerical truncation
errors into the coordinate trajectories of an order in the ti
step lower than that present in the direct method~i.e., present
in the integration algorithm!. Such additional numerical er
rors to those in the direct method artificially alter the co
strained dynamics, as illustrated in the simulations of Se
IV C and IV D. Incorporating~a1!, ~a2!, and ~a3! in the di-
rect approach ensures thatd ṙ i in Eq. ~5! is complete; i , and
consequently that the direct approach satisfies requirem
~B!. Absence of a single constraint contribution fromd ṙ i , for
a singlei, would have implied violation of requirement~B!.
The proof of this implication is analogous to that in the er
analysis of Sec. III C. As in the MD case@22#, application of
this direct method in SD simulations leads to constraints
drift progressively from their constraint values, mainly b
cause of the truncation error in integration algorithms. He
this direct method violates requirement~A!. Accordingly, we
describe in the Appendix a correction method@27# for the
constraint drift, more conveniently discussed after the ma
rial in Sec. III has been presented, and show that the@direct
1 correction# method satisfies both requirements~A! and
~B!. Next, we present an alternative constraint method
two techniques of implementation, which also satis
requirements~A! and ~B!. The need for this alternative
method is discussed in Sec. III B, where we compare
@direct1correction# method and the two techniques.

III. THE UNDETERMINED PARAMETERS APPROACH

A truncated Taylor series solution of Eq.~5! can be writ-
ten as

r i„t01dt,l~ t0!…5r i~ t0!1dt(
j 51

N

mi j
tt ~ t0!•Fj~ t0!

2dt (
k51

l

lk~ t0!(
j 51

N

mi j
tt ~ t0!•@“ jsk#~ t0!

5r i8~ t01dt !1dr i„t01dt,l~ t0!…

~ i 51, . . . ,N!, ~8!

wheredr i„t01dt,l(t0)… denotes the term containing thel’s.
To compute the coordinates, first ther 8(t01dt) are evalu-
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ated by numerically integrating Eq.~5! using F only ~i.e.,
d ṙ i50). Two integrators were used in the simulations of S
IV: an Euler integrator

r i8~ t01dt !5r i~ t0!1dt(
j 51

N

mi j
tt ~ t0!•Fj~ t0!1O~dt2!

~ i 51, . . . ,N!, ~9!

and a fourth order Runge-Kutta algorithm

r i8~ t01dt !5r i~ t0!1 1
6 ~Dr i

(1)12Dr i
(2)12Dr i

(3)1Dr i
(4)!

1O~dt5! ~ i 51, . . . ,N!, ~10!

where

Dr i
(1)5dt ṙ i@r ~ t0!#5dt(

j 51

N

mi j
tt @r ~ t0!#•Fj@r ~ t0!#,

Dr i
(n11)5dt ṙ i@r ~ t0!1cnDr (n)#

5dt(
j 51

N

mi j
tt @r ~ t0!1cnDr (n)#•Fj@r ~ t0!1cnDr (n)#,

n51,2,3; c15c25
1

2
, c351, ~11!

with square brackets delimiting arguments. Note that
Runge-Kutta integrator requires four evaluations per ti
step of the computationally expensive mobility matri
whereas the Euler scheme requires just one. Second, thdr
are chosen to satisfy the constraints. Replacing thel(t0)’s
by undetermined parametersg’s, Eq. ~8! becomes

r i~ t01dt,g!

5r i8~ t01dt !1dr i~ t01dt,g!

5r i8~ t01dt !2dt

3 (
k51

l

gk(
j 51

N

mi j
tt ~ t0!•@“ jsk#(t0) ~ i 51, . . . ,N!,

~12!

where theg’s are chosen to satisfy Eq.~2!. Therefore, insert-
ing Eq. ~12! ; i PPc into Eq. ~2! gives

sk„r ~ t01dt,g!…

5skSr 8~ t01dt !2dt (
k851

l

gk8(
j 51

N

m$% j
tt ~ t0!•@“ jsk8#~ t0!D

50 ~k51, . . . ,l !, ~13!

where the first subscript inm$% j
tt runs overnk . The l g ’s

obtained by solving this generally nonlinear system are s
stituted into Eq.~12! to provide the final coordinates. B
analogy with Eq.~7!, from Eq. ~12! we write
6-3
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dr i~ t01dt,g!52dt (
kPCi

gk (
j Pnk

mi j
tt ~ t0!•@“ jsk#~ t0!

2dt (
k¹Ci

gk (
j Pnk

mi j
tt ~ t0!•@“ jsk#~ t0!

5dr i
I1dr i

II ~; i PPc!. ~14!

Note that; i PPc ~b1! dr i
I does not arise solely fromFi

c and
~b2! dr i

IIÞ0, and~b3! ; i ¹Pc , dr iÞ0. When the undeter
mined parameters method is applied to the MD system,
counterpart of Eq.~14! is given by @22# dr i(t01dt,g)
52(@dt#2/mi)(kPCi

gk@“ isk#(t0)5dr i
I (; i PPc), where

we note that; i PPc (b̄1) dr i
I arises solely fromFi

c and (b̄2)

dr i
II50, and (b̄3) ; i ¹Pc , dr i50. The contrast betwee

~b1,b2,b3! and (b̄1,b̄2,b̄3) follows directly from that between
~a1,a2,a3! and (ā1,ā2,ā3). The undetermined parameters a
proach satisfies requirement~A! by construction, and incor
porating ~b1!, ~b2!, and ~b3! ensures thatdr i(t01dt,g) in
Eq. ~12! is complete; i , which in turn implies that the ap
proach satisfies requirement~B!, as shown by the following
error analysis.

The integration algorithm in the direct method can be r
resented by the expansion in Eq.~8!. Assuming henceforth
that the integration algorithm has a local error in the coor
nates ofO(dtm11), the $dt lk(t0)( j 51

N mi j
tt (t0)•@“ jsk#(t0)%

term in Eq.~8! is of O(dtm). If @( j 51
N mi j

tt (t0)•@“ jsk#(t0)# is
of O(dta), thenl(t0) is of O(dtm2a21), or

lk~ t0!5bk1O~dtm2a!, ~15!

where theb’s are some estimated values of thel(t0)’s. In
the undetermined parameters approach, thel(t0)’s are re-
placed by theg’s, as described before. Accordingly, repla
ing the b’s by the g’s, Eq. ~15! becomesgk5lk(t0)
1O(dtm2a), which after insertion back into Eq.~12! gives
the coordinates from the method of undetermined parame
as

r i~ t01dt,g!5r i8~ t01dt !

2dt (
k51

l

lk~ t0!(
j 51

N

mi j
tt ~ t0!•@“ jsk#~ t0!

1O~dtm11! ~ i 51, . . . ,N!. ~16!
01140
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By comparing Eq.~16! with Eq. ~8! we can write

r i@undetermined parameters#5r i@direct#1O~dtm11!,

~ i 51, . . . ,N!. ~17!

From the assumed order of errorO(dtm11) of the coordi-
nates in the integration algorithm, we can write

r i@direct#5r i@exact#1O~dtm11! ~ i 51, . . . ,N!,
~18!

where r i@exact# is the trajectory obtained ideally from a
exact solution of the equations of motion. Inserting Eq.~18!
into Eq. ~17! gives

r i@method#5r i@exact#1O~dtp! ~ i 51, . . . ,N!,
~19!

where method5‘‘undetermined parameters’’ andp5m11.
Comparison with Eq.~18! shows that the method of undete
mined parameters satisfies requirement~B!. Two techniques
for computing theg’s are described next.

A. Coupled technique

This technique consists of two parts, the first is iterat
and corrects the constrained coordinates, the second is
iterative and corrects the unconstrained coordinates. To s
Eq. ~13! for the g’s, we Taylor expand in the first par
sk(r (t01dt,g)) aboutr 8(t01dt) and recast the expansion
in the matrix form

s1Lg1Q1•••50, ~20!

where the vectorss andg contain thel sk(r 8(t01dt)) and
gk8 , respectively,Lkk85Lkk8„r 8(t01dt),t0… with Lkk8(z,u)
[2dtÃkk8(z,u), andQ is quadratic in theg ’s,
e

Qk5 (
i , j Pnk

@dt#2

2 (
k8,k951

l

gk8gk9F (
j 8Pnk8

mi j 8
tt

~ t0!•@“ j 8sk8#~ t0!GF (
j 9Pnk9

mj j 9
tt

~ t0!•@“ j 9sk9#~ t0!G :@“ i“ jsk#„r 8~ t01dt !…

~k51, . . . ,l !. ~21!

Neglecting nonlinear terms, Eq.~20! is solved initially forg (0)’s, which are then inserted into Eq.~21!, and Eq.~20! solved for
g (1)’s, and so on until theg ’s converge within desired tolerances on the constraints in Eq.~13!. Assuming convergence at som
time step afterr iterations, we then have
6-4
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r i~ t01dt,g!5r i8~ t01dt !2dt (
k851

l

gk8

3 (
j Pnk8

mi j
tt ~ t0!•@“ jsk8#~ t0! ~; i PPc!,

~22!

wheregk85gk8
(r ) (k851, . . . ,l ). Using theseg ’s, the uncon-

strainedr i are corrected in the second noniterative part

r i~ t01dt,g!5r i8~ t01dt !2dt (
k851

l

gk8

3 (
j Pnk8

mi j
tt ~ t0!•@“ jsk8#~ t0! ~; i ¹Pc!.

~23!

Note that the first part incorporates~b1! and ~b2!, and the
second~b3!. The formal differences between this techniq
and the MD ‘‘matrix technique’’@22# result from the contras
between~b1,b2,b3! and (b̄1,b̄2,b̄3). Next, we describe an
alternative decoupled scheme and discuss its advantage

B. Decoupled scheme:HSHAKE

This technique also consists of an iterative first part wh
corrects the constrained coordinates, and a noniterative
ond part which corrects the unconstrained coordinates. E
iteration of the first part comprises two stages. Becausedr i

I

in Eq. ~14! contains only contributions from constraints i
volving r i , it is accumulated in stage I by decoupling the
constraints and successively satisfying each with correct
to r i . We consider a certainsk(r ) and rewrite Eq.~14! as

dr i~ t01dt,g!52dtgk (
j Pnk

mi j
tt ~ t0!•@“ jsk#~ t0!

2dt (
k8PCi ,k8Þk

gk8

3 (
j Pnk8

mi j
tt ~ t0!•@“ jsk8#~ t0!2dt (

k8¹Ci

gk8

3 (
j Pnk8

mi j
tt ~ t0!•@“ jsk8#~ t0!

5dr i
I1dr i

II ~; i Pnk!, ~24!

where dr i
II denotes the last of the three terms. To sati

separatelysk(r )50, only the first term of Eq.~24! is re-
quired:

dr i~ t01dt,gk!52dtgk (
j Pnk

mi j
tt ~ t0!•@“ jsk#~ t0!

~; i Pnk!. ~25!
01140
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During stage I of iterationq, HSHAKE successively select
each constraintsk50 and corrects its positions according
Eq. ~25!, to satisfy it. Withgk(q) denoting thegk computed
in iteration q, and rold(t01dt) including all preceding
changes, the new positions when considering somesk ,

r i
new~ t01dt !5r i

old~ t01dt !1dr i„t01dt,gk~q!…

5r i
old~ t01dt !2dtgk~q!

3 (
j Pnk

mi j
tt ~ t0!•@“ jsk#~ t0! ~; i Pnk!,

~26!

should satisfy

sk„r
new~ t01dt !…5skS rold~ t01dt !2dtgk~q!

3 (
j Pnk

m$% j
tt ~ t0!•@“ jsk#~ t0! D

50, ~27!

which is generally nonlinear ingk(q). Taylor expanding
aboutrold(t01dt),

skS rold~ t01dt !2dtgk~q! (
j Pnk

m$% j
tt ~ t0!•@“ jsk#~ t0! D

5sk„r
old~ t01dt !…1gk~q!Lkk„r

old~ t01dt !,t0…1•••50,

~28!

and neglecting terms nonlinear ingk(q), yields

gk~q!52
sk„r

old~ t01dt !…

Lkk„r
old~ t01dt !,t0…

. ~29!

Stage I of iterationq consists therefore of successively s
lecting each constraint and applying to it Eqs.~26! and~29!.
Using thegk(q) (k51, . . . ,l ) computed in this stage, th
coordinates corrected by Eq.~26! are corrected in stage II by

r i
new~ t01dt !5r i

old~ t01dt !2dt (
k8¹Ci

gk8~q!

3 (
j Pnk8

mi j
tt ~ t0!•@“ jsk8#~ t0! ~; i PPc!.

~30!

Additional iterations, each consisting of stages I and II,
performed until all constraints are satisfied within desir
tolerances. Stages I and II accumulatedr i

I and dr i
II ; i

PPc , respectively, and iterating compensates for the dec
pling of dr i

I , the separate inclusion ofdr i
II in stage II, and the

linearization of Eq.~28!. At convergence we again have E
~22! but with theg ’s given here by
6-5
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TABLE I. Structure and properties ofSHAKE, HSHAKE, andSHAKE!. From the last two rows,SHAKE and
HSHAKE satisfy requirement~B! but SHAKE! does not.

HSHAKE ~SD! SHAKE~MD! SHAKE!(SD)

dr i
I (; i PPc) Stage I of first part, Entire iteration, Entire iteration,

Eqs.~26! and ~29! Eq. ~32! Eqs.~26! and ~29!

dr i
II (; i PPc) Stage II of first part, Eq.~30! 0 0

dr i (; i ¹Pc) Second part, Eq.~23! 0 0
Extra errors inr i ,; i PPc No No Yes
Extra errors inr i ,; i ¹Pc No No Yes
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gk8~q! ~k851, . . . ,l !. ~31!

In the second noniterative part ofHSHAKE, the unconstrained
r i are corrected according to Eq.~23! with the g ’s obtained
by Eq. ~31!. Stages I and II of the first part incorporate~b1!
and~b2!, respectively, the second part incorporates~b3!, and
combining Eqs.~22! and ~23! yields Eq.~12!. Hencedr i(t0
1dt,g) generated by either the coupled technique
HSHAKE is complete; i , and consequently both techniqu
satisfy requirement~B!. Because they satisfy requireme
~A! by construction, they are true implementations of t
undetermined parameters approach.

The formal differences betweenHSHAKE and SHAKE,
noted in Table I, result from the contrast between~b1,b2,b3!
and (b̄1,b̄2,b̄3). In particular, due to the contrast betwe
~b1! and (b̄1), the correction in stage I of aHSHAKE itera-
tion, Eqs. ~26! and ~29!, is more involved than that of a
SHAKE iteration @22#

r i
new~ t01dt !5r i

old~ t01dt !

2
sk„r

old~ t01dt !…@“ isk#~ t0!

(
i Pnk

@“ isk#„r
old~ t01dt !…•@“ isk#~ t0!

~; i Pnk!. ~32!

In the MD limit, Eqs.~26! and~29! reduce identically to Eq.
~32!, stage II and the second part ofHSHAKE vanish, and
HSHAKE reduces toSHAKE. Like SHAKE, it also satisfies re-
quirements~A! and ~B! and hence is an extension ofSHAKE

to SD simulations with HI, as summarized in Table I.
We favor HSHAKE over the @direct1correction# method

and the coupled technique for two reasons. First, numer
solution of Al5b or Eq. ~20! every time step become
costly for a large number of constraints. The drift correcti
scheme~e.g., first part ofHSHAKE! operates on coordinate
from the direct method, which incorporate already the eff
of constraints, and therefore it converges faster thanHSHAKE.
To satisfy the constraints, the correction scheme effectiv
adjusts the actual constraint forces from the direct meth
while HSHAKE computes directly the approximate constra
forces. This difference in convergence rates occurs als
MD simulations @27#. Despite its slower convergenc
HSHAKE is more efficient than the@direct1correction#
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method because of the extra cost of computing thel ’s. Sec-
ond, application of the@direct1correction# method or the
coupled technique to type~2! simulations, where the con
straints may vary during runtime, requires construction o
new and usually different size matrixA or L , respectively, at
each time step involving change in constraints. Such cha
however is generally random, requiring a complex proced
to repeatedly construct a correspondingA or L . In contrast,
HSHAKE easily accommodates changes in constraints du
simulation because of its decoupled structure. This cont
occurs also in colloidal deposition simulations@3#.

C. On alternative algorithms to HSHAKE

Consider a hypothetical algorithm alternative toHSHAKE

@in the sense that it also satisfies requirement~A!#, which we
denote bySHAKE! and which, in contrast withHSHAKE, con-
sists of a single iterative part comprising only one sta
Specifically, in iterationq, SHAKE! selects every constrain
and corrects its coordinates according to Eqs.~26! and ~29!,
with g ’s denoted here byj ’s. Additional iterations are per-
formed until all constraints are satisfied within desired tol
ances. Iteration to convergence hence accumulates onlydr i

I

; i PPc . At convergence, we therefore have

r i~ t01dt,j!5r i8~ t01dt !

2dt (
k8PCi

jk8 (
j Pnk8

mi j
tt ~ t0!•@“ jsk8#~ t0!

~; i PPc , SHAKE! !, ~33!

wherejk85(q51
r jk8(q). The unconstrained coordinates a

not corrected bySHAKE!, thus

r i~ t01dt !5r i8~ t01dt ! ~; i ¹Pc ,SHAKE! !. ~34!

From Table I we see that in addition to~b1!, SHAKE! incor-
porates (b̄2) and (b̄3) rather than~b2! and ~b3!, leading to
an incompletedr i(t01dt,j); i , as seen by combining Eqs
~33! and~34! and comparing them with Eq.~12!, which im-
plies thatSHAKE! violates requirement~B!, as shown by the
following error analysis.

For theN spheres subject to Eq.~2! and with an arbitrary
m, SHAKE! gives from Eq.~33!,
6-6
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r i~ t01dt,j!5r i8~ t01dt !

2dt (
k851

l

jk8 (
j Pnk8

mi j
tt ~ t0!•@“ jsk8#~ t0!

1dt (
k8¹Ci

jk8 (
j Pnk8

mi j
tt ~ t0!•@“ jsk8#~ t0!

~; i PPc!. ~35!

In SHAKE!, the l(t0)’s are replaced by thej ’s. Replacing
thus the b ’s by the j ’s, Eq. ~15! becomesjk5lk(t0)
1O(dtm2a), which after insertion back into Eq.~35! gives

r i~ t01dt,j!5r i8~ t01dt !

2dt (
k851

l

lk8~ t0! (
j Pnk8

mi j
tt ~ t0!•@“ jsk8#~ t0!

1dt (
k8¹Ci

lk8~ t0! (
j Pnk8

mi j
tt ~ t0!•@“ jsk8#~ t0!

1O~dtm11! ~; i PPc!. ~36!

Comparing Eq.~36! with Eq. ~8! ; i PPc , we can write

r i@SHAKE!#5r i@direct#1O~dtm! ~; i PPc!, ~37!

where theO(dtm11) term in Eq.~36! has been dominated b
the O(dtm) term preceding it. From Eq.~34!, the uncon-
strained coordinates are unmodified bySHAKE!, hence

r i~ t01dt !5r i8~ t01dt !

2dt (
k851

l

lk8~ t0! (
j Pnk8

mi j
tt ~ t0!•@“ jsk8#~ t0!

1dt (
k851

l

lk8~ t0! (
j Pnk8

mi j
tt ~ t0!•@“ jsk8#~ t0!

~; i ¹Pc!. ~38!

Comparing Eq.~38! with Eq. ~8! ; i ¹Pc , we can write

r i@SHAKE!#5r i@direct#1O~dtm! ~; i ¹Pc!. ~39!

Inserting Eq.~18! ; i PPc into Eq.~37! and; i ¹Pc into Eq.
~39!, and combining the pair gives Eq.~19! with method
5‘‘ SHAKE!’’ and p5m. Comparison with Eq.~18! shows
thatSHAKE! violates requirement~B! for constrained and un
constrained particles.

The purpose of the above discussion is not purely a
demic. Indeed, theSHAKE-HI algorithm @28# for enforcing
distance constraints among spherical particles in Brown
dynamics~BD! simulations with Rotne-Prager@18# HI, can
01140
a-

n

also be applied to SD simulations because it satisfies requ
ment ~A!. In the case of SD simulations,SHAKE-HI is a spe-
cial case ofSHAKE! however, and hence violates requir
ment ~B!. SHAKE-HI has already been shown@29# to be
inaccurate for BD simulations, and as we just noted, sho
not be used for SD simulations either as it leads to incorr
trajectories, as illustrated in the simulations of Secs. IV
and IV D.

D. HSHAKE for internal coordinate constraints

A system ofN spherical particles is subject to Eq.~2!,
with distance, angle, and torsional constraints@23#, labeled
by the setsCd, Ca, andCt, respectively. For distance con
straints, Eq.~2! reduces to

sk~r !5@r i j ~ t !#22di j
2 50 ~; kPCd!, ~40!

wheredi j is the constant separation between particlesi andj,
and r i j [r i2r j . By means of Eq.~40!, Eqs. ~26! and ~29!
reduce to

r j
new~ t01dt !5r j

old~ t01dt !22dtgk~q!m̄j , j i
tt ~ t0!•r j i ~ t0!,

r i
new~ t01dt !5r i

old~ t01dt !22dtgk~q!m̄i ,i j
tt ~ t0!•r i j ~ t0!,

~41!

and

gk~q!5@dt#21
@r j i

old~ t01dt !#22di j
2

4r j i
old~ t01dt !•@m̄i ,i j

tt ~ t0!1m̄j , j i
tt ~ t0!#•r j i ~ t0!

,

~42!

respectively, wherem̄i , jk
tt (t0)[mi j

tt (t0)2mik
tt (t0). For angle

constraints, Eq.~2! becomes

sk~r !5fabc~r !2aabc50 ~; kPCa!, ~43!

where fabc[arccos(r̂ab• r̂ cb) is the angle atb formed by
particlesa, b, andc, r̂ab[rab /urabu, andaabc is the constant
constraint angle. Using Eq.~43!, Eqs.~26! and ~29! become

r i
new~ t01dt !5r i

old~ t01dt !2dtgk~q!

3 (
j 5a,b,c

mi j
tt ~ t0!•@“ jfabc#~ t0! ~ i 5a,b,c!,

~44!

and
6-7



gk~q!5@dt#21
fabc„r

old~ t01dt !…2aabc
, ~45!

RAMZI KUTTEH PHYSICAL REVIEW E 69, 011406 ~2004!
(
i , j 5a,b,c

@“ ifabc#„r
old~ t01dt !…•mi j

tt ~ t0!•@“ jfabc#~ t0!
respectively. For torsional constraints, Eq.~2! becomes

sk~r !5tabcd~r !2babcd50 ~; kPCt!, ~46!

where

tabcd

[arccos@~ r̂ab3 r̂ cb!•~ r̂bc3 r̂dc!/~sinfabcsinfbcd!#

is the dihedral angle formed by particlesa, b, c, andd, and
l
ge
ce

a

01140
babcd is its constant constraint value. By means of Eq.~46!,
Eqs.~26! and ~29! reduce to

r i
new~ t01dt !5r i

old~ t01dt !2dtgk~q!

3 (
j 5a,b,c,d

mi j
tt ~ t0!•@“ jtabcd#~ t0!

~ i 5a,b,c,d! ~47!

and
gk~q!5@dt#21
tabcd„r

old~ t01dt !…2babcd

(
i , j 5a,b,c,d

@“ itabcd#„r
old~ t01dt !…•mi j

tt ~ t0!•@“ jtabcd#~ t0!

, ~48!
-

We

ion
tset,
e
nd
lts
respectively. Expressions for“ ifabc and “ itabcd are fur-
nished by the Wilson vectors@30# for angle and torsiona
internal coordinates, respectively. In the first part and sta
of iteration q, HSHAKE successively selects each distan
angle, and torsion constraint, and corrects its coordinates
cording to Eqs.~41! and ~42!, Eqs.~44! and ~45!, and Eqs.
~47! and~48!, respectively. In stage II of iterationq, HSHAKE

corrects these coordinates according to Eq.~30!,

r i
new~ t01dt !5r i

old~ t01dt !22dt (
k8P(Cd2Ci )

gk8~q!Dk8

2dt (
k8P(Ca2Ci )

gk8~q!Ak8

2dt (
k8P(Ct2Ci )

gk8~q!Tk8 ~; i PPc!,

~49!

where

Dk8[$m̄i , j 8 i 8
tt

~ t0!•r j 8 i 8~ t0!%k8 ,

Ak8[$mia
tt ~ t0!•@“afabc#~ t0!1mib

tt ~ t0!•@“bfabc#~ t0!

1mic
tt ~ t0!•@“cfabc#~ t0!%k8 ,
I
,
c-

Tk8[$mia
tt ~ t0!•@“atabcd#~ t0!1mib

tt ~ t0!•@“btabcd#~ t0!

1mic
tt ~ t0!•@“ctabcd#~ t0!1mid

tt ~ t0!•@“dtabcd#~ t0!%k8 .

~50!

After iteration to convergence, the second part ofHSHAKE

corrects the unconstrainedr i according to Eq.~23!:

r i~ t01dt,g!5r i8~ t01dt !22dt (
k8PCd

gk8Dk8

2dt (
k8PCa

gk8Ak82dt (
k8PCt

gk8Tk8

~; i ¹Pc!, ~51!

with g’s given by Eq.~31!.

IV. SIMULATION RESULTS AND DISCUSSION

To verify HSHAKE’s methodology and report its perfor
mance, we present here results obtained with it from type~1!
simulations of chains and rigid nonspherical particles.
recall from Sec. I that in type~1! simulations rigid bonding
between particles is not allowed after the start of simulat
and hence the constraints are determined at the ou
whereas in type~2! simulations rigid bonding is possibl
during simulation and consequently both the number a
forms of the constraints may vary during the run. Resu
6-8
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METHODS FOR STOKESIAN DYNAMICS SIMULATIONS . . . PHYSICAL REVIEW E 69, 011406 ~2004!
from type ~2! simulations are described elsewhere. In Se
IV A–IV D, the spherical particles have diameterD
51 mm, are in a fluid with the shear viscosityh of water,
and their hydrodynamic mobility is computed using o
force multipole algorithm@1#, which includes the hydrody
namic wall effect in the bounded geometry cases. T
boundary in these cases is a planar hard wall with s
boundary conditions, and lies in thexy plane with the fluid
occupying the half spacez.0. We adhere for accuracy to
multipole truncation orderLt>3 @1,2,17#, which is always
specified. Both the Euler integrator in Eq.~9! and the fourth
order Runge-Kutta in Eq.~10! were used to generate th
r 8(t01dt) @see Eq.~12!#. Results were generated using t
former, except where stated otherwise. Test simulations w
performed to ensure that the chosendt values yielded accu
rate results.

A. Sedimentation of a pair of nonspherical particles

Referring to Fig. 1~a!, consider two identical prolate sphe
roids with axes initially vertically oriented@Q(t0)50# and
aligned with gravity. Depending on the initial value of the
scaled center-center separation@R/a#(t0), where a is the
length of the major semiaxis, the released spheroids
execute three types of sedimenting motion@31#: ~1! if
@R/a#(t0).Rc /a, whereRc /a is some critical separation
the particles steadily separate whileQ increases, and in the

FIG. 1. ~a! The instantaneous configuration of a pair of se
menting spheroids, with axes in a vertical plane, is determined
their separationR/a and inclination angleQ. ~b! Types of motion
for a pair of sedimenting prolate spheroids with axes initially p
allel to gravity. W is the spatial period forR(t0),Rc , and the
dashed lines forR(t0)5Rc and R(t0).Rc denote asymptotic tra
jectories. ~c! The two pairs or singles of Secs. IV A and IV B
respectively, with dashed contours to convey overall shapes. F
top to bottom,a'D and 1.37D, respectively.~d! The instantaneous
configuration of a spheroid sedimenting near an inclined wall, w
axis in a plane normal to it, is determined by the separationZ/a and
orientation angleQ.
01140
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e
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re
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limit of infinite separationQ(t`),90°; ~2! if @R/a#(t0)
5Rc /a, the particles steadily separate withQ increasing to
Q(t`)590°; ~3! if @R/a#(t0),Rc /a, the particles rotate
past the horizontal (Q.90°) at some finite maximum sepa
rationRmax, and then approach each other along trajecto
mirroring those preceding the maximum separation. O

-
y

-

m

h

FIG. 2. Sedimentation distanceZ/a vs separationR/a and rota-
tion angleQ, from SD simulations withHSHAKE of a pair of sedi-
menting RSD in an unbounded fluid, withdt50.005 s,Lt53, and
Q(t0)50. The solid and dashed lines correspond to@R/a#(t0)53
and 3.5, respectively, andQ is measured from the upward pointin
vertical such that 0<Q<180°.

FIG. 3. Same as Fig. 2, but for a pair of sedimenting RSQ w
the solid and dashed lines corresponding to@R/a#(t0)53 and 3.5,
respectively.
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TABLE II. Average number ofHSHAKE iterations per step for the SD simulations in an unbound
fluid of sedimenting pairs of RSD and RSQ, taken over'106 and 9.33105 time steps, respectively, wher
dt50.005 s.

@R/a#(t0)53 3.5 4 4.5 5 6.6

RSD 1.044 1.015 1.005 1.001 1.0
RSQ 30.32 29.25 28.39 25.35 20.86
nd
ar

a
l

f
tr

an

e

n-

hen

ce
ve
n,
es

ing

r a

I

SQ
d

in

-
ith
itia

-

R/a5@R/a#(t0) again, the motion proceeds periodically a
indefinitely in an unbounded fluid. The three regimes
depicted in Fig. 1~b!. Referring to Fig. 1~c!, consider two
pairs of identical nonspherical particles: rigid spheroid
dimers ~RSD! of aspect ratio'2, and rigid spheroida
quadrimers~RSQ! of aspect ratio'1.37. We defineR/a as
the scaled~center of mass!-~center of mass! separation be-
tween a pair,Z/a as the scaledz coordinate of the center o
mass of either particle in a pair, the two equal by symme
and Q as the angle between thez axis andab for a dimer,
andbd for a quadrimer.

We first performed SD simulations on each pair in
unbounded fluid with different@R/a#(t0), Q(t0)50, and a
sedimentation force2Fgẑ on each spherical particle, wher
Fg55.1313310215 N. Using HSHAKE, dimer rigidity was
maintained by a distance constraint as in Eq.~40!, with dab
51.001D, and quadrimer rigidity by three distance co

FIG. 4. Rmin occurrences@see Fig. 1~b!# vs (Wu2Wb)/a ~right
curves! and (Tu2Tb) ~left curves! from SD simulations with
HSHAKE, in unbounded and bounded fluid, of a pair of sediment
RSD with Q(t0)50, @R/a#(t0)53, @Z/a#(t0)52000, andLt53.
The dotted and dashed curves were generated withdt50.005 s,
using the Euler integrator in Eq.~9! and the fourth order Runge
Kutta in Eq.~10!, respectively. The solid curve was generated w
dt50.001 s using the Euler integrator. Occurrence 9 is the in
and 1 the final before the pair impacts the wall.
01140
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straints, two angle constraints as in Eq.~43!, and a torsion
constraint as in Eq.~46!, with dab5dbc5dcd51.001D,
aabc560°, abcd5120°, andbabcd50. Convergence of a
distance, angle, or torsion constraint is reached w
@Eq. ~42! numerator# <xd3di j

2 , @Eq. ~45! numerator#
<xa3aabc , or @Eq. ~48! numerator# <x t3babcd, respec-
tively, where we takexd5xa5x t51026. The simula-
tions generate the three dynamical regimes of Fig. 1~b!. The
pair of RSD in Fig. 2 is released from an initial referen
height of Z/a50 and sediments down into the negati
range ofZ/a. For each initial value of the pair separatio
@R/a#(t0), the sedimenting motion generates two curv
plotted with the same line type in Fig. 2. The curve sampl
the whole range of the horizontal represents@Z/a#(Q) while
the other represents@Z/a#(R/a). Similar remarks apply to
the pair of RSQ in Fig. 3. Figures 2 and 3 show that fo
given aspect ratio, a larger@R/a#(t0) leads to largerRmax

andW ~and a larger temporal periodT), whereas for a given
@R/a#(t0), a larger aspect ratio leads to largerRmax and W
~and a largerT). Lengthy simulations suggestRc /a'4.93
for the dimers andRc /a'6.15 for the quadrimers. Table I
gives the convergence rates ofHSHAKE in the simulations.
The above simulation results for the pairs of RSD and R
constructed withHSHAKE are consistent with those obtaine
for spheroids by the method of reflections@31# or the ana-

g

l

FIG. 5. Sedimentation distance2Y/a along the wall vs separa
tion Z/a and rotation angleQ, from SD simulations withHSHAKE of
a sedimenting RSD near a tilted wall, withdt50.01 s, Lt53,
@Z/a#(t0)510.36, andQ(t0)5135°. TheZ/a curves~left! and the
Q curves~right! correspond from right to left~f.r.t.l.! to tilt angle
J52.5°,2.9°,3°,3.2°,4°,5°,6°, and 7°, with theJw57° Q curve
omitted, wherew denotes particle contact with the wall.
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METHODS FOR STOKESIAN DYNAMICS SIMULATIONS . . . PHYSICAL REVIEW E 69, 011406 ~2004!
lytical extension of a mobility scheme for SD to prola
spheroids@14#, noted in Sec. I.

We also performed two SD simulations, in a bounded a
unbounded fluid, respectively, of a pair of sedimenting R
with @R/a#(t0)53, Q(t0)50, @Z/a#(t0)52000, and a force

2Fgẑ on each spherical particle. Comparison of results
veals a sedimenting motion in the bounded fluid qualitativ
similar to that in the unbounded fluid, depicted in Fig. 2 f
@R/a#(t0)53. With u and b denoting unbounded an
bounded fluid, respectively, Fig. 4 shows that as the p
sediments, the hydrodynamic effect of the wall leads to
decrease inWb and an increase inTb , compared to the con
stant Wu'182.7a and Tu'211.5 s, so that the oscillatin
trajectories become more ‘‘compressed,’’ the motion m
retarded, and no longer strictly periodic. Given the mag

FIG. 6. 2Y/a vs normal and parallel velocitiesVz and Vy ,
respectively, from the simulations of Fig. 5. TheVz curves~left!
and the Vy curves ~right! correspond f.r.t.l. to J52.5°,
2.9°,3°,3.2°,4°,5°, and 6°. TheJw57° velocity curves are omitted

FIG. 7. Same as Fig. 5, but for a sedimenting RSQ near a ti
wall, with @Z/a#(t0)510.32 and Q(t0)560°. The Z/a solid
curves~left! and theQ solid curves~right! correspond f.r.t.l. toJ
52°,2.4°,2.5°,2.6°,3°,3.2°, and 4°, with theJw54° Q curve omit-
ted. The dashed curves correspond toJ51°.
01140
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tudes ofTu andWu , the effect of the wall on the trajectorie
is seen to be relatively small in this case.

B. Sedimentation of a nonspherical particle near a tilted wall

Referring to Fig. 1~d!, consider a prolate spheroid near a
infinite plane wall inclined by an angleJ with respect to
gravity. For arbitrary initial orientationQ(t0) and scaled
center-wall separation@Z/a#(t0), the released spheroid ca
execute three types of sedimenting motion, depending on
value ofJ @32#: ~1! if J,J1, whereJ1 is some critical angle,
the particle separates from the wall whileQ varies and in the
limit of infinite separation the rotation ceases andQ(t`) be-
comes constant;~2! if J1,J,J2, whereJ2 is another critical
angle, the particle eventually reaches a stable equilibr
where it translates uniformly at@Z/a#5@Z/a#eq and Q
5Qeq; finally, ~3! if J.J2, the particle monotonically ap
proaches the wall until it makes contact. Referring to F
1~c!, we consider a single particle in a bounded fluid fro
each pair and defineZ/a as the scaled~center of mass!-wall
separation,Y/a as the scaledy coordinate of the center o
mass,Vz andVy as the corresponding center of mass velo
ties, andQ as the orientation angle relative to thez axis,
specified as in Sec. IV A.

We performed SD simulations of each particle sedime
ing near a wall inclined by an angleJ relative to a force of
magnitudeFg on each sphere, with the same~arbitrary! val-
ues of@Z/a#(t0) andQ(t0) and different values ofJ. Particle
rigidity was maintained usingHSHAKE, as specified in Sec
IV A. As seen in Figs. 5–8, the simulations produce the th
dynamical regimes described above. In particular, for a gi
aspect ratio, a largerJ leads to a smaller@Z/a#eq, as seen
from Fig. 5 or 7; for a givenJ, a larger aspect ratio leads t
a larger@Z/a#eq, as seen from Figs. 5 and 7 forJ53° and
3.2°. In addition, Figs. 6 and 8 show that forJ,J1, the
velocity normal to the wall,Vz , is nonzero, while forJ1
,J,J2 , Vz eventually vanishes and the parallel compon
Vy becomes constant. Simulations we performed with ot
arbitrary values of@Z/a#(t0) andQ(t0) yielded qualitatively

d

FIG. 8. Same as Fig. 6, but from the simulations of Fig. 7. T
Vz curves ~left! and theVy curves ~right! correspond f.r.t.l. toJ
51°,2°,2.4°,2.5°,2.6°,3°, and 3.2°. TheJw54° velocity curves are
omitted.
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TABLE III. Average number ofHSHAKE iterations per step for the SD simulations of sedimentation near a tilted wall of a RSD a
RSQ, taken over 106 and 33105 time steps, respectively, wheredt50.01 s. Averages forJ5Jw are not shown.

J51° 2° 2.4° 2.5° 2.6° 2.9° 3° 3.2° 4° 5° 6°

RSD 1.028 1.074 1.11 1.31 1.96 1.98 1.99
RSQ 13.71 15.7 15.1 14.84 17.19 12.57 12.94
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similar results. Table III gives the convergence rates ofHS-

HAKE in the simulations. The above simulation results for t
RSD and RSQ constructed withHSHAKE are consistent with
those obtained for spheroids by the boundary integ
method@32# or a combination of SD with a nonconstrai
scheme for forming dimers@33#.

C. Comparative simulations of a sedimenting chain of spheres

We performed a pair of SD simulations in an unbound
fluid on a sedimenting chain of 32 spherical particles c
nected by distance constraints, as in Eq.~40!, maintained by
HSHAKE and SHAKE!, respectively. The center-center di
tance between adjacent particles was constrained to 1D,
with xd51026. Each simulation started from the same ra
dom nonlinear chain configuration shown in Fig. 10 and
for 4300 steps withdt50.01 s,Lt53, a sedimentation force
Fgŷ on each particle, and a Lennard-Jones 6-12 poten
with s5D and«5kT, whereT5300 K. Absence of uncon
strained particles from the current system means thatHS-

HAKE and SHAKE! differ only in the missingdr i
II contribu-

tion from the latter, representing contributions from
constraints that do not containr i . Hence application of
SHAKE! is equivalent to a ‘‘nearest rods’’ approximatio
along the chain.

For the mth order integration algorithm we can writ
based on Secs. III B and III C,

r i@HSHAKE#5r i@exact#1a iO~dtm11!,

FIG. 9. The solid curve through the origin is the RMS differen
K(t) ~/2.8! between the trajectories from SD simulations in u
bounded fluid of a sedimenting 32-particle chain usingHSHAKE and
SHAKE!. The dotted straight line highlights its quasilinear depe
dence. The remaining curves represent the magnitudeG of the end-
to-end vector from the simulations withHSHAKE ~solid! and
SHAKE! ~dashed!.
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r i@SHAKE!#5r i@exact#1b iO~dtm! ~ i 51, . . . ,N!,
~52!

wherea and b are prefactors of the local truncation erro
in one step ofHSHAKE and SHAKE!, respectively. AfterNs
5t/dt time steps, the global truncation error inHSHAKE

is given by ( j 51
Ns@a i

jO(dtm11)#5O(dtm11)( j 51
Nsa i

j

5O(dtm11)Nsā i5ā i tO(dtm), where the bar denotes an a
erage overNs steps. With a similar calculation forSHAKE!,
the trajectories from the two schemes can be written as

r i@HSHAKE] ~ t !5r i@exact#~ t !1ā i tO~dtm!,

r i@SHAKE!] ~ t !5r i@exact#~ t !1b̄ i tO~dtm21!

~ i 51, . . . ,N!. ~53!

We computed the RMS difference between the trajecto
from SD simulations with HSHAKE and SHAKE!, K(t)
5(( i 51

N $r i
c@HSHAKE#(t)2r i

c@SHAKE!#(t)%2/N)1/2, where N
532 and the computed trajectories can be written as

r i
c@HSHAKE] ~ t !5r i@HSHAKE] ~ t !1r i ,

r i
c@SHAKE!#~ t !5r i@SHAKE!#~ t !1r i8 ~ i 51, . . . ,N!,

~54!

with r and r8 denoting the global round-off errors due
finite machine precision in executing the codes contain
the HSHAKE and SHAKE! routines, respectively. As thes
codes are identical except for the difference between
HSHAKE and SHAKE! routines, which consists of the
missing implementation ofdr i

II from the latter, to a good
approximation r i'r i8( i 51, . . . ,N). From Eq. ~54!
we then have $r i

c@HSHAKE#(t) 2 r i
c@SHAKE!#(t)%

' $r i@HSHAKE# (t) 2 r i@SHAKE!#(t)%, and by means of
Eq. ~53! K(t)'BtO(dtm21), where B5(( i 51

N b̄ i
2/N)1/2 is

expected to be bounded and slowly varying in time beca
of the averaging over bothNs andN. For the Euler integrator
m51 andK(t)'Bt. Thus theSHAKE! violation of require-
ment ~B!, summarized by Eq.~52!, should lead to a com-
putedK(t) quasilinear in time. Figure 9 confirms this pre
diction and also compares the magnitudes of the end-to-
vectors from the two simulations. Figure 10 highlights t
marked difference between the chain configurations ge
ated in the simulations usingHSHAKE andSHAKE!, illustrat-
ing the point made in Secs. II and III C that violation o
requirement~B!, here bySHAKE!, would artificially alter the
dynamics of the system.

-
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FIG. 10. Snapshot pairs from the simulations of Fig. 9 w
HSHAKE ~left! andSHAKE! ~right!, taken from top to bottom at 0 s

10.75 s, 21.5 s, 32.25 s, and 43 s. The sedimentation forceFgŷ
points from left to right along the horizontal, with a slight tilt int
the page.
01140
D. Friction coefficient of a linear chain of spheres near a wall

Consider a rigid linear chain ofN spherical particles with
center-center separation between adjacent particles ofD
1S), placed in a fluid parallel to thex axis, at a heightH
above a wall in thexy plane. The normalized friction coef
ficient of the chain for motion parallel to its axis is given b

C5
Fx

3phDUx
, ~55!

whereFx is the force on the chain andUx its translational
velocity. Analytical approaches@34,35# for evaluatingC are
limited to chains with large aspect ratios and at relativ
largeH. We first describe two numerical approaches for co
puting C. The first can be cast as either a friction or equiv
lent mobility problem, and requires a single evaluation
elements of the~inverse! friction or ~inverse! mobility ten-
sors, respectively, at the chain configuration specified abo
The second approach requires short SD simulations on
chain usingHSHAKE and makes direct use of Eq.~55!. C
values for the chain computed by both approaches, for s
eral values ofN and H, are then compared to verify th
accuracy ofHSHAKE. For conciseness we define the chain
translationally rigid~TR! when ~1! it remains parallel to the
x axis at heightH above the wall, ensured by imposingUiy
5Uiz50 (i 51, . . . ,N), and ~2! its spheres all move with
the same translational velocity,Uix5Ux . The chain is com-
pletely rigid ~CR! if it is also rotationally rigid, ensured by
setting V50, which implies that in generalTÞ0. For an
only translationally rigid~OTR! chain, we setT50, so that
in generalVÞ0.

The friction formulation of the first approach for compu
ing C employs the inverse of Eq.~1!,

S F

TD 5S z tt z tr

z rt z rrD S U

V
D , ~56!

where thez ab are (3N33N) friction matrices. From the first
row of Eq. ~56!,

F5z ttU1z trV, ~57!

or in dyadic notation Fi5( j 51
N (z i j

tt
•Uj1z i j

tr
•Vj ) ( i

51, . . . ,N), where thez i j
ab are (333) friction tensors. For a

CR chain, Eq.~57! leads toFix5Ux( j 51
N @zi j

tt #xx . Summing
over N and using Eq.~55! gives

C5
1

3phD (
i , j 51

N

@z i j
tt #xx ~CR!. ~58!

For an OTR chain, the second row of Eq.~56!
yields V52@z rr#21z rtU, Eq. ~57! then gives Fix

5Ux( j 51
N $(z tt2z tr@z rr#21z rt) i j %xx , and we get

C5
1

3phD (
i , j 51

N

$~z tt2z tr@z rr#21z rt! i j %xx ~OTR!.

~59!

In the mobility formulation, the first row of Eq.~1! gives

U5mttF1mtrT. ~60!
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TABLE IV. Computed friction coefficients of the chain described in Sec. IV D, withN spheres, lengthL5ND10.1D(N21), and height
H5(0.511026)D above the wall.C andC* are the friction coefficients of the OTR chain, computed by Eq.~63! from short SD simulations
usingHSHAKE andSHAKE!, respectively, withLt54, dt51024 s, andxd510210. From the simulations withHSHAKE, ^Vy& is the average
angular velocity of the spheres about they axis,Ux the chain translational velocity, andI the average number ofHSHAKE iterations per step.

N C Eq. ~62! Eq. ~58! C* ^Vy&(rad/s) Ux(D/s) I

5 33.616 33.616 35.549 33.515 0.0361 0.0810 11
10 65.964 65.964 69.972 65.8078 0.0374 0.0825 32
15 98.295 98.295 104.381 98.119 0.0378 0.0831 56
20 130.6209 130.6209 138.786 130.435 0.0380 0.0834 81.5
25 162.944 162.944 173.189 162.753 0.0382 0.0835 107.75
30 195.266 195.266 207.591 195.0707 0.0383 0.0836 128.75
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For a CR chain, the second row of Eq.~1!
leads to T52@mrr#21mrtF, and Eq. ~60! yields
Fix5Ux( j 51

N $(mtt2mtr@mrr#21mrt) i j
21%xx , so that

C5
1

3phD (
i , j 51

N

$~mtt2mtr@mrr#21mrt! i j
21%xx ~CR!.

~61!

For an OTR chain, Eq. ~60! leads to Fix

5Ux( j 51
N @(mtt) i j

21#xx , and we get

C5
1

3phD (
i , j 51

N

@~mtt! i j
21#xx ~OTR!. ~62!

Equations~58! and~59! are equivalent to Eqs.~61! and~62!,
respectively. Given the chain configuration above and
friction/mobility algorithm@1# for spheres in a bounded fluid
the more convenient Eqs.~58! and~62! are adopted howeve
for computingC by this first approach below. Calculations
this type, requiring no simulations, have been perform
@36,37# on chains of spheres but using Eq.~58! only.

In the second approach for computingC, we perform a
short SD simulation on the same chain with an external fo
Fgx̂ on each sphere. By means ofHSHAKE, (N21) distance
constraints, as in Eq.~40!, fix the separation between adja
cent particles to (D1S). By symmetry Uiy50 (i
51, . . . ,N), and for H@L, where the chain lengthL
5ND1(N21)S, the medium is effectively unbounded s
that Uiz'0 also by symmetry, whereas forH!L, HI with
the wall lead toUiz'0, as illustrated below. Hence forH
@L or H!L, Uiy50, Uiz'0, and by virtue ofHSHAKE

Uix5Ux , so the chain is TR. Absence of orientational co
dinates from the constraints impliesTc50, hence in genera
01140
r

d

e

-

VÞ0, so the chain is OTR. The force on the chain isFx

5NFg1( i 51
N Fix

c , where the sum of the internal constrai
forces must vanish. The approximate constraint forcesFi

c

52(k51
l gk“ isk were computed at every time step and t

vanishing of their sum verified as a numerical check. T
velocity of each sphere was computed by the central dif
ence formula Ui(t0)5@r i(t01dt)2r i(t02dt)#/2dt
1O(dt2), Uix(t0)5Ux(t0) was verified, andC computed in
this second approach by Eq.~55! as

C5C~ t0!5
NFg

3phDUx~ t0!
. ~63!

Tables IV and V compare the friction coefficients com
puted by Eqs.~63!, ~62!, and~58!, for H5(0.511026)D and
H510L, respectively, and various chain lengths. As a dilu
aqueous suspension of micron-diameter polystyrene sph
is observed@38# to aggregate into linear chains withS
'0.1D under a strong electric field, and similar separati
has been predicted@39# for field-induced chains of dipola
colloidal particles, we tookS50.1D. For C computed with
SD simulations by Eq.~63!, we generated ther 8(t01dt) @see
Eq. ~12!# with the fourth order Runge-Kutta integator in E
~10! and verified at every time step thatUix5Ux , Uiy50,
Uiz'0 (i 51, . . . ,N), hence that the chain is TR as antic
pated. That the chain is specifically OTR is highlighted
the nonzerôVy& in Table IV. Tables IV and V show that the
friction coefficients computed by Eq.~63! using HSHAKE

agree exactly with those from Eq.~62!, for both values ofH.
In addition, for H510L the medium around the chain i
effectively unbounded, weak HI with the wall givêVy&
'0, and the OTR chain is effectively CR. We expect th
the friction coefficients computed by Eq.~58! to agree with
TABLE V. Same as Table IV, but withH510L.

N C Eq. ~62! Eq. ~58! C* ^Vy&(rad/s) Ux(D/s) I

5 2.0840 2.0840 2.0840 2.0494 '0 1.3062 15
10 3.116 3.116 3.116 3.0270 '0 1.747 25
15 4.0348 4.0348 4.0348 3.9064 '0 2.0240 22
20 4.890 4.890 4.890 4.733 '0 2.227 31
25 5.7025 5.7025 5.7025 5.524 '0 2.387 41
30 6.484 6.484 6.484 6.288 '0 2.519 55
6-14
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those from Eq.~63! or ~62!, as Table V confirms.HSHAKE

generates through Eq.~63! the correct friction coefficients in
Tables IV and V because it satisfies both requirements~A!
and ~B!. Any alternative scheme satisfying requirement~A!
but not~B! will result in a chain which is also OTR under th
above simulation conditions but with an incorrectUx , hence
incorrect friction coefficients. We illustrate this point by r
computing the friction coefficients with Eq.~63! but using
SHAKE!. As discussed in Sec. IV C, the difference for t
chain system betweenHSHAKE and SHAKE! is the missing
dr i

II contribution from the latter, which leads to violation o
requirement~B!. Tables IV and V show thatSHAKE! always
underestimates in this case the correct value of the fric
coefficient.

V. CONCLUSION

We described constraint algorithms for SD simulations
arbitrary shape particles, rigid or flexible, consisting
spheres connected by appropriate constraints and with
obtained by any of a number of available mobility schem
for spheres. The optimal algorithmHSHAKE @23# was verified
with simulations of nonspherical particles and chains, wh
employed different forms of constraints and numerical in
grators. In the simulations of rigid particles, two simp
shapes were considered, but simulations with other sha
are possible with appropriate internal coordinate constrai
perhaps even using the simple shapes as building blo
Similarly, simulations of chains of nonspherical particles
simulations of other flexible particles are feasible. Addition
simulation results obtained withHSHAKE are described else
where@40#. Finally we note that a situation may arise whe
the analytical development of a mobility algorithm tailore
to a specific nonspherical particle shape~e.g., oblate or pro-
late spheroids!, as discussed in Sec. I, is being consider
Even in this case, we have shown that the approach
scribed here provides a complementary quick means of g
erating preliminary simulation results for the approxima
particle shape and situation at hand, thus aiding to de
whether to pursue the more involved analytical approach

APPENDIX: DRIFT CORRECTION

We describe a method for eliminating the constraint d
from the direct method at every time step.; i PPc , we add
to Eq. ~8! a term containingl unknownh ’s,

r i~ t01dt,h!5r i„t01dt,l~ t0!…

2dt (
k51

l

hk(
j 51

N

mi j
tt ~ t0!•@“ jsk#~ t0!

5r i„t01dt,l~ t0!…1dr i~ t01dt,h!

~; i PPc!. ~A1!
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To compute the coordinates, ther i„t01dt,l(t0)… are gener-
ated by the direct method, and thedr , and therefore theh ’s,
chosen to satisfy Eq.~2! at every time step. Therefore, in
serting Eq.~A1! into Eq. ~2! gives

sk„r ~ t01dt,h!…5skS r „t01dt,l~ t0!…

2dt (
k851

l

hk8(
j 51

N

m$% j
tt ~ t0!•@“ jsk8#~ t0!D

50 ~k51, . . . ,l !. ~A2!

Theh’s obtained by solving Eq.~A2! are substituted into Eq
~A1! to provide the finalr i ; i PPc . We setr i(t01dt,h)
5r i„t01dt,l(t0)… ; i ¹Pc . Consequently, the first part o
the coupled technique or ofHSHAKE @23# is used to compute
the h’s, replacing r i8(t01dt), r i(t01dt,g), and dr i(t0

1dt,g) by r i„t01dt,l(t0)…, r i(t01dt,h), and dr i(t0
1dt,h), respectively

The drift correction method approximateslk(t0) by
@lk(t0)1hk# ; i PPc , as seen by comparing Eq.~8! with
Eq. ~A1!. Accordingly, replacingbk by @lk(t0)1hk#, Eq.
~15! becomes@lk(t0)1hk#5lk(t0)1O(dtm2a), keeping in
mind the equality is only approximate because theb’s are
estimates of thel’s. Inserting this expression back into E
~A1!, the r i from the correction method can be written as

r i~ t01dt,h!5r i~ t0!1dt(
j 51

N

mi j
tt ~ t0!•Fj~ t0!

2dt (
k51

l

lk~ t0!(
j 51

N

mi j
tt ~ t0!•@“ jsk#~ t0!

1O~dtm11! ~; i PPc!. ~A3!

Comparing Eq.~A3! with Eq. ~8! ; i PPc , we can write

r i@direct1correction#5r i@direct#1O~dtm11! ~; i PPc!.
~A4!

The unconstrainedr i are unmodified by the correctio
scheme, hence

r i@direct1correction#5r i@direct# ~; i ¹Pc!. ~A5!

Inserting Eq.~18! ; i PPc into Eq. ~A4! and ; i ¹Pc into
Eq. ~A5!, and combining the resulting equations gives E
~19! with method5‘‘direct1correction’’ and p5m11.
Comparison with Eq.~18! shows that the@direct1correction#
method satisfies requirement~B!. It satisfies also requiremen
~A! by construction.
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